DOI QR코드

DOI QR Code

Natural Anthraquinone Derivatives from a Marine Mangrove Plant-Derived Endophytic Fungus Eurotium rubrum: Structural Elucidation and DPPH Radical Scavenging Activity

  • Li, Dong-Lil (Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Graduate School of Chinese Academy of Sciences) ;
  • Li, Xiao-Ming (Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences) ;
  • Wang, Bin-Gui (Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences)
  • Published : 2009.07.31

Abstract

There is considerable interest in the isolation of potent radical scavenging compounds from natural resources to treat diseases involving oxidative stress. In this report, four new fungal metabolites including one new bisdihydroanthracenone derivative (1, eurorubrin), two new seco-anthraquinone derivatives [3, 2-O-methyl-9-dehydroxyeurotinone and 4, 2-O-methyl-4-O-(${\alpha}$-D-ribofuranosyl)-9-dehydroxyeurotinone], and one new anthraquinone glycoside [6,3-O-(${\alpha}$-D-ribofuranosyl)-questin], were isolated and identified from Eurotium rubrum, an endophytic fungal strain that was isolated from the inner tissue of the stem of the marine mangrove plant Hibiscus tiliaceus. In addition, three known compounds including asperflavin (2), 2-0-methyleurotinone (5), and questin (7) were also isolated and identified. Their structures were elucidated on the basis of spectroscopic analysis. All of the isolated compounds were evaluated for 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging activity.

Keywords

References

  1. Agusta, A., K. Ohashi, and H. Shibuya. 2006. Bisanthraquinone metabolites produced by the endophytic fungus Diaporthe sp. Chem. Pharm. Bull. 54: 579-582 https://doi.org/10.1248/cpb.54.579
  2. Brash, D. E. and P. A. Havre. 2002. New careers for antioxidants. Proc. Nat. Acad. Sci. U.S.A. 99: 13969-13971 https://doi.org/10.1073/pnas.232574399
  3. Carvalho, M. R., L. C. A. Barbosa, J. H. Queiróz, and O. W. Howarth. 2001. Novel lactones from Aspergillus versicolor. Tetrahedron Lett. 42: 809-811 https://doi.org/10.1016/S0040-4039(00)02154-7
  4. Duan, X. J., W. W. Zhang, X. M. Li, and B. G. Wang. 2006. Evaluation of antioxidant property of extract and fractions obtained from a red alga, Polysiphonia urceolata. Food Chem. 95: 37-43 https://doi.org/10.1016/j.foodchem.2004.12.015
  5. Fiorentino, A., B. D'Abrosca, S. Pacifico, G. Cefarelli, P. Uzzo, and P. Monaco. 2007. Natural dibenzoxazepinones from leaves of Carex distachya: Structural elucidation and radical scavenging activity. Bioorg. Med. Chem. Lett. 17: 636-639 https://doi.org/10.1016/j.bmcl.2006.11.002
  6. Frlich, I. and P. Riederer. 1995. Free radical mechanisms in dementia of Alzheimer type and the potential for antioxidative treatment. Drug Res. 45: 443-449
  7. Fujimoto, H., T. Fujimaki, E. Okuyama, and M. Yamazaki. 1999. Immunomodulatory constituents from an ascomycete, Microascus tardifaciens. Chem. Pharm. Bull. 47: 1426-1432 https://doi.org/10.1248/cpb.47.1426
  8. Gill, M. 1994. Pigments of fungi (Macromycetes). Nat. Prod. Rep. 11: 67-90 https://doi.org/10.1039/np9941100067
  9. Gill, M. 1999. Pigments of fungi (Macromycetes). Nat. Prod. Rep. 16: 301-317 https://doi.org/10.1039/a705730j
  10. Gill, M. 2003. Pigments of fungi (Macromycetes). Nat. Prod. Rep. 20: 615-639 https://doi.org/10.1039/b202267m
  11. Heo, S.-J., J.-P. Kim, W.-K. Jung, N.-H. Lee, H.-S. Kang, E.-M. Jun, et al. 2008. Identification of chemical structure and free radical scavenging activity of diphlorethohydroxycarmalol isolated from a brown alga, Ishige okamurae. J. Microbiol. Biotechnol. 18: 676-681
  12. Koyama, J., I. Morita, K. Tagahara, and M. Aqil. 2001. Bisanthraquinones from Cassia siamea. Phytochemistry 56: 849-851 https://doi.org/10.1016/S0031-9422(01)00025-5
  13. Li, K., X. M. Li, N. Y. Ji, and B. G. Wang. 2007. Natural bromophenols from the marine red alga Polysiphonia urceolata (Rhodomelaceae): Structural elucidation and DPPH radicalscavenging activity. Bioorg. Med. Chem. 15: 6627-6631 https://doi.org/10.1016/j.bmc.2007.08.023
  14. Li, Y., X. F. Li, U. Lee, J. S. Kang, H. D. Choi, and B. W. Son. 2006. A new radical scavenging anthracene glycoside, asperflavin ribofuranoside, and polyketides from a marine isolate of the fungus Microsporum. Chem. Pharm. Bull. 54: 882-883 https://doi.org/10.1248/cpb.54.882
  15. Matsuda, H., H. Shimoda, T. Morikawa, and M. Yoshikawa. 2001. Phytoestrogens from the roots of Polygonum cuspidatum (Polygonaceae): Structure-requirement of hydroxyanthraquinones for estrogenic activity. Bioorg. Med. Chem. Lett. 11: 1839-1842 https://doi.org/10.1016/S0960-894X(01)00318-3
  16. Nemeikaite-Ceniene, A., E. Sergediene, H. Nivinskas, and N. Cenas. 2002. Cytotoxicity of natural hydroxyanthraquinones: Role of oxidative stress. Z. Naturforsch. C 57: 822-827
  17. Riecken, E. O., M. Zeitz, C. Emde, R. Hopert, L. Witzel, R. Hintze, U. Marsch-Ziegler, and J. C. Vester. 1990. The effect of an anthraquinone laxative on colonic nerve tissue: A controlled trial in constipated women. Z. Gastroenterol. 28: 660-664
  18. Rice-Evans, C. A. and A. T. Diplock. 1993. Current status of antioxidant therapy. Free Radic. Biol. Med. 15: 77–96 https://doi.org/10.1016/0891-5849(93)90127-G
  19. Semple, S. J., S. M. Pyke, G. D. Reynolds, and R. L. P. Flower. 2001. In vitro antiviral activity of the anthraquinone chrysophanic acid against poliovirus. Antivir. Res. 49: 169-178 https://doi.org/10.1016/S0166-3542(01)00125-5
  20. Wang, S., X. M. Li, F. Teuscher, D. L. Li, A. Diesel, R. Ebel, P. Proksch, and B. G. Wang. 2006. Chaetopyranin, a benzaldehyde derivative, and other related metabolites from Chaetomium globosum, an endophytic fungus derived from the marine red alga Polysiphonia urceolata. J. Nat. Prod. 69: 1622-1625 https://doi.org/10.1021/np060248n
  21. Wirz, A., U. Simmen, J. Heilmann, I. Çalis, B. Meier, and O. Sticher. 2000. Bisanthraquinone glycosides of Hypericum perforatum with binding inhibition to CRH-1 receptors. Phytochemistry 55: 941-947 https://doi.org/10.1016/S0031-9422(00)00305-8
  22. Zhang, Y., X. M. Li, P. Proksch, and B. G. Wang. 2007. Ergosterimide, a new natural Diels-Alder adduct of a steroid and maleimide in the fungus Aspergillus niger. Steroids 72: 723-727 https://doi.org/10.1016/j.steroids.2007.05.009
  23. Zhang, Y., S. Wang, X. M. Li, C. M. Cui, C. Feng, and B. G. Wang. 2007. New sphingolipids with a previously unreported 9-methyl-$C_{20}$-sphingosine moiety from a marine algous endophytic fungus Aspergillus niger EN-13. Lipids 42: 759-764 https://doi.org/10.1007/s11745-007-3079-8
  24. Zhang, Y., X. M. Li, and B. G. Wang. 2007. Nigerasperones A-C, new monomeric and dimeric naphtho-$\gamma$-pyrones from a marine alga-derived endophytic fungus Aspergillus niger EN-13. J. Antibiot. 60: 204-210 https://doi.org/10.1038/ja.2007.24
  25. Zhang, Y., X. M. Li, C. Y. Wang, and B. G. Wang. 2007. A new naphthoquinoneimine derivative from the marine algalderived endophytic fungus Aspergillus niger EN-13. Chin. Chem. Lett. 18: 951-953 https://doi.org/10.1016/j.cclet.2007.05.054
  26. Zhou, X. M. and Q. H. Chen. 1988. Biochemical study of Chinese rhubarb: XXII. Inhibitory effect of anthraquinone derivatives on sodium-potassium-ATPase of rabbit renal medulla and their diuretic action. Acta Pharmacol. Sin. 23: 17-20
  27. Zhou, X., B. Song, L. Jin, D. Hu, C. Diao, G. Xu, Z. Zou, and S. Yang. 2006. Isolation and inhibitory activity against ERK phosphorylation of hydroxyanthraquinones from rhubarb. 16: 563-568 https://doi.org/10.1016/j.bmcl.2005.10.047

Cited by

  1. 7-O-Methylvariecolortide A, a New Spirocyclic Diketopiperazine Alkaloid from a Marine Mangrove Derived Endophytic Fungus, Eurotium Rubrum vol.5, pp.10, 2009, https://doi.org/10.1177/1934578x1000501014
  2. Anthracenedione Derivatives as Anticancer Agents Isolated from Secondary Metabolites of the Mangrove Endophytic Fungi vol.8, pp.4, 2009, https://doi.org/10.3390/md8041469
  3. Chemical Constituents of a Marine-Derived Endophytic Fungus Penicillium commune G2M vol.15, pp.5, 2009, https://doi.org/10.3390/molecules15053270
  4. Two new paeciloxocins from a mangrove endophytic fungus Paecilomyces sp. vol.59, pp.8, 2009, https://doi.org/10.1007/s11172-010-0290-1
  5. Conidiogenones H and I, Two New Diterpenes of Cyclopiane Class from a Marine‐Derived Endophytic Fungus Penicillium chrysogenum QEN‐24S vol.8, pp.9, 2009, https://doi.org/10.1002/cbdv.201000378
  6. Marine natural products vol.28, pp.2, 2009, https://doi.org/10.1039/c005001f
  7. Secondary metabolites of fungi from marine habitats vol.28, pp.2, 2009, https://doi.org/10.1039/c0np00061b
  8. Alkaloid and Anthraquinone Derivatives Produced by the Marine‐Derived Endophytic Fungus Eurotium rubrum vol.95, pp.1, 2009, https://doi.org/10.1002/hlca.201100255
  9. Sesterterpenes and 2H‐Pyran‐2‐ones (=α‐Pyrones) from the Mangrove‐Derived Endophytic Fungus Fusarium proliferatum MA‐84 vol.96, pp.3, 2009, https://doi.org/10.1002/hlca.201200195
  10. Two New Secoanthraquinone Derivatives from the Marine‐Derived Endophytic Fungus Aspergillus wentii EN‐48 vol.96, pp.3, 2009, https://doi.org/10.1002/hlca.201200201
  11. Chemical constituents of marine mangrove-derived endophytic fungus Alternaria tenuissima EN-192 vol.31, pp.2, 2009, https://doi.org/10.1007/s00343-013-2106-2
  12. Mangrove derived fungal endophytes - a chemical and biological perception vol.61, pp.1, 2009, https://doi.org/10.1007/s13225-013-0243-8
  13. Antioxidant Marine Products in Cancer Chemoprevention vol.19, pp.2, 2009, https://doi.org/10.1089/ars.2013.5235
  14. Fungal anthraquinones vol.49, pp.2, 2009, https://doi.org/10.1134/s000368381302004x
  15. Anthraquinone Derivatives and an Orsellinic Acid Ester from the Marine Alga‐Derived Endophytic Fungus Eurotium cristatum EN‐220 vol.97, pp.7, 2009, https://doi.org/10.1002/hlca.201300358
  16. Three New Asperentin Derivatives from the Algicolous Fungus Aspergillus sp. F00785 vol.12, pp.12, 2009, https://doi.org/10.3390/md12125993
  17. Two new anthraquinones from the soil fungus Penicillium purpurogenum SC0070 vol.68, pp.9, 2009, https://doi.org/10.1038/ja.2015.35
  18. Mycobiota associated with the rhodophyte alien species Asparagopsis taxiformis (Delile) Trevisan de Saint‐Léon in the Mediterranean Sea vol.36, pp.4, 2009, https://doi.org/10.1111/maec.12189
  19. Anthraquinones and Derivatives from Marine-Derived Fungi: Structural Diversity and Selected Biological Activities vol.14, pp.4, 2009, https://doi.org/10.3390/md14040064
  20. Fungal and Bacterial Pigments: Secondary Metabolites with Wide Applications vol.8, pp.None, 2017, https://doi.org/10.3389/fmicb.2017.01113
  21. Bioactive secondary metabolites produced by an endophytic fungus Gaeumannomyces sp. JS0464 from a maritime halophyte Phragmites communis vol.70, pp.6, 2009, https://doi.org/10.1038/ja.2017.39
  22. Optimized production and isolation of antibacterial agent from marine Aspergillus flavipes against Vibrio harveyi vol.7, pp.6, 2009, https://doi.org/10.1007/s13205-017-1015-z
  23. Anthraquinones from the saline-alkali plant endophytic fungus Eurotium rubrum vol.70, pp.12, 2017, https://doi.org/10.1038/ja.2017.121
  24. Effects of flask configuration on biofilm growth and metabolites of intertidal Cyanobacteria isolated from a mangrove forest vol.125, pp.1, 2009, https://doi.org/10.1111/jam.13761
  25. Antibacterial activity and action mechanism of questin from marine Aspergillus flavipes HN4-13 against aquatic pathogen Vibrio harveyi vol.9, pp.1, 2009, https://doi.org/10.1007/s13205-018-1535-1
  26. Association between dipsacus saponin VI level and diversity of endophytic fungi in roots of Dipsacus asperoides vol.35, pp.3, 2009, https://doi.org/10.1007/s11274-019-2616-y
  27. Induction of pigment production through media composition, abiotic and biotic factors in two filamentous fungi vol.21, pp.None, 2009, https://doi.org/10.1016/j.btre.2019.e00308
  28. Candelariella vitellina extract triggers in vitro and in vivo cell death through induction of apoptosis: A novel anticancer agent vol.127, pp.None, 2019, https://doi.org/10.1016/j.fct.2019.03.003
  29. Virescenosides From the Holothurian-Associated Fungus Acremonium Striatisporum Kmm 4401 vol.17, pp.11, 2009, https://doi.org/10.3390/md17110616
  30. Neuroprotective Metabolites from Vietnamese Marine Derived Fungi of Aspergillus and Penicillium Genera vol.18, pp.12, 2009, https://doi.org/10.3390/md18120608
  31. Antioxidant Molecules from Marine Fungi: Methodologies and Perspectives vol.9, pp.12, 2009, https://doi.org/10.3390/antiox9121183
  32. Fungal Endophytes as Efficient Sources of Plant-Derived Bioactive Compounds and Their Prospective Applications in Natural Product Drug Discovery: Insights, Avenues, and Challenges vol.9, pp.1, 2009, https://doi.org/10.3390/microorganisms9010197
  33. Colors of life: a review on fungal pigments vol.41, pp.8, 2009, https://doi.org/10.1080/07388551.2021.1901647