Effect of Tremella fuciformis Berk on Anti-stress activities during Long-Term and Short-Term in Mice

마우스에서 흰목이버섯 (Tremella fuciformis Berk)의 장.단기적 항스트레스 효과

  • Ko, Min-Seok (Department of Bioengineering at the Postgraduate School, Konkuk University) ;
  • Lee, Seung-Jin (Department of Bioengineering at the Postgraduate School, Konkuk University) ;
  • Kang, Sang-Mo (Department of Bioengineering at the Postgraduate School, Konkuk University)
  • 고민석 (건국대학교 대학원 생물공학과) ;
  • 이승진 (건국대학교 대학원 생물공학과) ;
  • 강상모 (건국대학교 대학원 생물공학과)
  • Published : 2009.04.29

Abstract

The objective of this study was to evaluate the protective effect of aqueous extracts from Tremella fuciformis Berk(Tf AE) against stress during long-term and short-term in ICR mice. All the animals were randomly divided into two groups which had been bred for 5 months that were treated by immobilization stress for 8 weeks (total 7 months breeding, equivalent to human beings aged 20) with or without Tf AE, and one out of two groups was continuously bred until they become 18 months old (equivalent to human beings aged 60) without Tf AE. Afterwards, the changes of serum and hepatic metabolites were investigated on the basis of the index of stress-related in vivo oxidative damage. As a result, it was found that stress increases serum triglyceride (TG) and aspartate aminotransferase (AST) and decreases serum HDL-cholesterol in the long-term (total 18 months breeding) and short-term (total 7 months breeding). In addition, stress concerned the decrease of total antioxidant status (TAS) and superoxide dismutase (SOD) as well as the increase of malondialdehyde (MDA) in liver. On the other hand, Tf AE-fed groups reversed all these biochemical indices. These results suggest that stress in one's youth causes negative results in TG, HDL-cholesterol, LDL-cholesterol, AST, TAS, SOD and MDA measured in one's senescent. The administration of Tf AE in the stressed mice decreases serum TG and AST that are increased by stress, and exerts influence on the increase of serum HDL-cholesterol. Also Tf AE recovered the values of liver TAS, SOD and MDA in the stressed mice. In conclusion, Tf AE represented protective effect in the stressed mice to some degree.

본 연구에서는 일정기간 스트레스를 받을 때 흰목이버섯 추출물 식이가 스트레스로 인한 생체내의 산화적 손상지표 변화를 보아 사람의 나이 20대에 받은 스트레스가 노년기인 60대 이상에 접어들었을 때에 혈청과 간의 대사산물 변화에 있어 식품 재료로써 흰목이버섯 추출물의 장단기적 보호 효과와 식이의 안정성을 살펴보았다. ICR 마우스를 사람의 나이 20대에 해당되는 5개월까지 사육한 후, 8주간의 스트레스를 가하고 사람의 나이 노년기에 해당되는 18개월 될 때까지 사육하여 스트레스로 인한 생체 내의 산화적 손상지표로 혈청과 간의 대사산물의 변화를 조사하였다. 그 결과, 스트레스는 장 단기적으로 모두 혈청의 TG, AST 함량을 증가시키고, HDL-cholesterol 함량을 저하시키는 것에 반해, 여기에 흰목이버섯 추출물의 투여는 스트레스를 받은 쥐에서 혈청 TG, LDL-cholesterol과 AST의 함량을 감소시키고, HDL-cholesterol의 함량을 증가시키는 효과를 보여주었다. 스트레스는 간조직의 TAS 함량, SOD활성 감소와 MDA 함량 증가를 야기시켰으며, 스트레스 시 흰목이버섯 추출물의 투여 쥐는 TAS 함량, SOD활성을 증진시키고, MDA의 함량을 저하시키는데 긍정적 영향을 주었다. 따라서 젊었을 때 한때 받은 스트레스는 노년기의 TG, HDL-cholesterol, LDL-cholesterol, AST, TAS, SOD 그리고 MDA의 수치 모두에 있어서 부정적인 영향을 미치는 것으로 나타났다. 또한, 7개월과 18개월 그룹의 흰목이버섯 추출물 식이군이 대조군에 대해 MDA의 유의적 감소와 AST의 유의적 차이가 없음은 흰목이버섯 추출물이 장단기적으로 독성을 나타내지 않는 안전한 천연제제물로 사용할 수 있으리라 사료된다. 이러한 결과를 통해서 한때 어느 기간 받은 스트레스는 시간이 지난 노년기까지 혈청과 간조직에 부정적 영향을 주므로, 천연제제로써 흰목이버섯 추출물을 식용하면 어느 정도 장단기적 보호 효과를 얻을 수 있을 것으로 보인다. 또한 안전한 식품이므로 흰목이버섯 추출물의 식이는 과도한 스트레스에 노출되어 있는 현대인들을 위해 매우 유용할 것이며 장복하므로 노후 질병의 예방에도 많은 도움이 될 것으로 생각된다.

Keywords

References

  1. Selye, H. (1976), The Stress of Life, pp6-12, McGrawHill Publishing Company, New York, USA
  2. EIliot, J. R. (1982), Stress and human health, In Analysis and implications for research, C. Eisdorfer, Ed., pp1-20, Springer, New York, USA
  3. Detl'etsu, S. and A Kayo (2002), Neurochemical changes in mice following physical or psychological stress exposures, Behav. Brain Res. 134, 347-354 https://doi.org/10.1016/S0166-4328(02)00049-9
  4. Thierry, A. M., J. P. Tassin, G. Blanc, and J. Glowinski (1976), Selective activation of mesocortical DA system by stress, Nature 263, 242-244 https://doi.org/10.1038/263242a0
  5. Kubo, T., H. Amano, K. Kurahashi, and Y. Misu (1989), Nicotine-induced regional changes in brain noradrenaline and dopamine turnover in rats, J Pharmacobiodyn. 12, 107-112 https://doi.org/10.1248/bpb1978.12.107
  6. Fraioli, F., C. Morettil, D. Paolucci, E. Alicicco, F. Crescenzi, and G. Fortunio (1980), Physical exercise stimulates marked concomitant release of $\beta$-endorphin and adrenocorticotropic hormone (ACTH) in peripheral blood in man, Cell. Mol. Life Sci. 36, 987-989 https://doi.org/10.1007/BF01953837
  7. Guyton, A C. (1991), Textbook of Medical Physiology, 1st through 8th ed., W. B. Saunders Company, St. Louis, USA
  8. Fridovich, I. (1978), Thc biology of oxygen radicals, Science 201, 875-880 https://doi.org/10.1126/science.210504
  9. Christopher, B., C. N. Eric, Y. Tatsuro, and A. F. James (1991), Kinetic studies of superoxide dismutases: properties of the manganese-containing protein from Thermus thermophilus, J. Am. Chem. Soc. 113, 4069-4076 https://doi.org/10.1021/ja00011a003
  10. de Zwart, L. L., J. H. Meerman, J. N. Commandeur, and N. P. Vermeulen (1999), Biomarkers of free radical damage applications in experimental animals and in humans, Free Radic. Biol. Med. 26, 202-226 https://doi.org/10.1016/S0891-5849(98)00196-8
  11. Scartezzini, P., and E. Speroni (2000), Review on some plants of Indian traditional medicine with antioxidant activity, J. Ethnopharmacol. 71, 23-43 https://doi.org/10.1016/S0378-8741(00)00213-0
  12. Saito, M., H. Sakagami, and S. Fujisawa (2003), Cytotoxicity and apoptosis induction by butylated hydroxyanisole (BHA) and butylated hydroxytoluene (BHT), Anticancer Res. 23, 4693-4701
  13. Stefanidou, M., G. Alevisopoulos, A. Chatziioannou, and A. Koutselinis (2003), Assessing food additive toxicity using a cell model, Vet. Hum. Toxicol. 45, 103-105
  14. Diolock, A. T., J. L. Charleux, W. G. Crozier, F. J. Kok, C. Rice, M. Roberfroid, W. Stahl, and R. J. Vina R. J. (1998), Functional food science and defence against reactive oxidative species, Br. J. Nutr. 80, 77-112 https://doi.org/10.1079/BJN19980106
  15. Park, W. H. and H. D. Lee (1999), Illustrated Book of Korean Medicinal Mushrooms, Kyohak Publishing Company, Seoul, Korea
  16. Ying, J., X. Mao, and Q. Ma (1987), Icones of Medicinal Fungi From China, Science Press, Beijing, China
  17. Ukai, S., K. Hirose, T. Kiho, and C. Hara (1974), Polysaccharides in fungi. I. Purification and characterization of acidic heteroglycans from aqueous extract of Tremella fuciformis, Biol. Pharmaceut. Bull. 22, 1102-1107
  18. Fraser, C. G., H. J. Jennings, and P. Moyna (1973), Structural analysis of an. acidic polysaccharide from Tremella mesenterica NRRL Y-6158, Can. J. Biochem. 51, 219-224 https://doi.org/10.1139/v73-034
  19. Ukai, S., K. Hirose, T. Kiho, C. Hara, and T. lrikura (1972), Antitumor activity on sarcoma 180 of the polysaccharidεs from Tremella fuciformis Berk, Biol Pharmaceut. Bull. 20, 2293-2294
  20. Cheng, H. H., W. C. Hou, and M. L. Lu (2002), Interactions of lipid metabolism and intestinal physiology wíth Tremella fuciformis Berk edible mushroom in rats fed a high-cholesterol diet with or without Nebacitin, J. Agric. Food Chem. 50, 7438-7443 https://doi.org/10.1021/jf020648q
  21. Cheung, P. C. K. (1996), The hypocholesterolemic effect of two edible mushroom: Auricularìa auricula and Tremella fuciformis in hypercholesterolemic rats, Nutr. Res. 16, 1721-1725 https://doi.org/10.1016/0271-5317(96)00191-1
  22. Livne, E., D. Laufer, and I. Blumenfeld (1997), Comparison of in vitro response to growth hormone by chondrocytes from mandibular condyle cartilage of young and old mice, Calcif. Tissue Int. 7, 61-62 https://doi.org/10.1007/s002239900296
  23. Lee, S. Y. (2006), Studies on the Natural Products (Gardenia jasminoides Ellis and Tremella fuciformis Berk) Affecting the Improvement of Perceptive Ability, Ph. D. Dissertation, Dept. of Food Science and Technology, Dongkuk University, Seoul, Korea
  24. Park, S. Y. (2001), Study on the oxidative damage induced by stress and its recovery in mice, Ph. D.Dissertation, Dept. of Microbiology, Konkuk University, Seoul, Korea
  25. Kissεbah, A. H. (1974), Stress hormones and lipid metabolism, Proc. R. Soc. Med. 67, 665-667
  26. Howard, N. H., M. K Diεter, A. Poetro, B. B. Gabriele, G. Giuseppe, H. Juliana, P. Hazel, and S. Alex (1994), Biochernical and cytotoxic characterstics of an in vivo circulating oxidized LDL, J. Lipid Res. 35, 669-677
  27. Lee, M. J. (1986), Effect of Young-Ji (Ganoderma lucidum) extracts on experimentally induced hepatic damage and hyperlipidernia in rats, Ph. D. Dissertation, Dept. of Microbiology, Chosun University, Gwangju, Korea
  28. Cheung, P. C. K. (1972), The hypocholesterolemic effect of two Hugh Trowell, ischemic heart disease and dietary fiber, Am. J. Clin. Nutr. 25, 926-932 https://doi.org/10.1093/ajcn/25.9.926
  29. Lehtonen, A. J. (1978), The effect of vigorous physical activity at work on serum lipids with a special reference to serum high-density lipoprotein cholesterol, Acta. Physio. Scand. 104, 117-121 https://doi.org/10.1111/j.1748-1716.1978.tb06257.x
  30. Lim, S. S., M. K. Kim, and J. H. Lee (1997), Effect of Artemisia princeps var orientalis and Circium japonicum var ussuriense on liver function body lipid and bile acid of hyperlipidemic rat, Korean J. Nutr. Soc. 30, 797-802
  31. Woo, Y. S. (1992), Studies on the effects of slaughter stress on the blood picture and serum chemical values of pigs, M. S. Thesis, Dept. of Veterinary Medicine, Konkuk University, Seoul, Korea
  32. John, B. H. (2000), Measurement of lipids and evaluation of lipid disorders In Clinical diagnosis and management by Laboratory Methods, Proc. The Korean Society of Food Science and Technology Conference 2000, Seoul, Korea, pp171-198
  33. Park, K. J. (2006), Hypoglycemic effects of crude polysaccharidesextracted from Tremella fuciformis and the compostscontaining this extracts for antidiabetic effect, Korea patent. 10-2006-0020548
  34. Liu, F., V. E. C. Ooi, and S. T. Chang (1997), Free radical scaven밍ng activitiεs of mushroom polysaccharide extracts, Life Sci. 60, 763-771 https://doi.org/10.1016/S0024-3205(97)00004-0
  35. Toklu, H. Z., A. O. Sehirli, A. Velioglu-Ogunc, S. Cetinel, and G. Sener (2006), Acetaminophen-induced toxicity is prevented by beta-D-glucan treatment in mice, Eur. J. Pharmacol. 14, 133-140 https://doi.org/10.1016/j.ejphar.2006.05.033
  36. Lovin, R., W. Cottle, I. Pyke, M. Davanagh, and A. N. Belcastro (1987), Are induces of free radical damage related to exercise intensity, Eur. J. Appl. Physiol. 6, 313-316 https://doi.org/10.1007/BF00690898
  37. Lawler, J. M., S. K. Powers, H. V. Dij k, T. Visser, M. J. Kordus, and L. L. Ji (1994), Metabolic and antioxidant enzyme activities in the diaphragm : effects of acute exercise, Res. Physiol. Neurobio. 96, 139-149 https://doi.org/10.1016/0034-5687(94)90122-8
  38. Ji, L. L. (1993), Blood glutathione status during exercise: Effect of carbohydrate supplementation, J. Appl. Physiol. 74, 788-792 https://doi.org/10.1152/jappl.1993.74.2.788
  39. Mattila, P., K. Konko, M. Eurola, J. M. Pihlava, J. Astola, L. Vahteristo, V. Hietaniemi, J. Kumpulainen, M. Valtonen, and V. C. Piironen (2001), Contents of vitamins, mineral elements, and some phenolic compounds in cultivated mushrooms, J. Agric. Food. Chem. 49, 2343-2348 https://doi.org/10.1021/jf001525d
  40. Chen, Q. X., K. K. Song, Q. Ling, X. D. Liu, H. Huang, and H. Y. Guo (2005), Inhibitory effects on mushroom tyrosinase by p-alkoxybenzoic acids, Food. Chem. 91, 269-274 https://doi.org/10.1016/j.foodchem.2004.01.078
  41. http://u-lib.nanet.go.kr:8080/dl/DetailView.php (2009)
  42. Yun, M. K. R. and H. H. Robert (1999), Age related reductions in the activities of antioxidant enzymes in the rat inferior colliculus, Hear. Res. 135, 169-180 https://doi.org/10.1016/S0378-5955(99)00103-3
  43. Kellogg, E. W., and I. Fridovich (1975), Superoxide, hydrogen peroxide, and singlet oxygen in lipid peroxidation by a xanthine oxidase system, J. Biol. Chem. 25, 8812-8817
  44. Cheung, L. M., P. C. K. Cheung, and V. E. C. Ooi (2003), Antioxidant activity and tota1 phenolics of edible mushroom extracts, Food Chem. 81, 249-255 https://doi.org/10.1016/S0308-8146(02)00419-3
  45. Murcia, M. A., M. Martinez-Tome, A. M. Jimenez, A. M. Vera, M. Honrubia, and P. Parras (2002), Antioxidant activity of edible fungi (truffles and mushrooms): losses during industrial processing, J. Food Prot. 65, 1614-1622 https://doi.org/10.4315/0362-028X-65.10.1614
  46. Mattila, P., V. P. Salo, K. Konko, H. Aro, and T. C. Jalava (2002), Basic composition and amino acid contents of mushrooms cultivated in Finland, J. Agric. Food. Chem. 23, 6419-6422 https://doi.org/10.1021/jf020608m
  47. Okimoto, K., K. Hamazaki, H. Lwagaki, K. Orita, and A. Mori (1995), Effect of picibanil on the scavenging effect of free radicals produced during liver regeneration in the rat, Acta. Med. Okayama. 49, 75-79
  48. Chei, H. S. (1994), Lipid peroxidation and its Nutritional Significance, J. Korean Soc. Food Sci. Nutr. 23, 867-878
  49. Bedossa, P., K. Houglum, C. Trautwein, A. Holstege, and M. Chojkier (1994), Stimulation of collagen a I(I) gene expression is associated with lipid peroxidation in hepatocellular injury : a Link tot issue fibrosis, Hepatology. 19, 1262-1271
  50. Kayali, H., M. F. Ozdag, S. Kahraman, A. Aydin, E. Gonul, and Z. Odabasi (2005), The antioxidant effect of $\beta$-glucan on oxidative stress status in experimental spinal cord injury in rats, Neurosurg. Rev. 28, 298-302 https://doi.org/10.1007/s10143-005-0389-2