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Abstract: Trypanosoma brucei, a protozoan parasite, causes sleeping sickness in humans and Nagana disease in domes-
tic animals in central Africa. The trypanosome surface is extensively covered by glycosylphosphatidyiinositol (GPI)-anchored
proteins known as variant surface glycoproteins and procyclins. GPI anchoring is suggested to be important for trypanosome
survival and establishment of infection. Trypanosomes are not only pathogenically important, but also constitute a useful
model for elucidating the GPI biosynthesis pathway. This review focuses on the trypanosome GPI biosynthesis pathway.
Studies on GPI that will be described indicate the potential for the design of drugs that specifically inhibit trypanosome

GPI biosynthesis.
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INTRODUCTION

Trypanosoma brucei is a protozoan parasite whose life cydle in-
cludes residence in the tsetse fly, and which invades mammals
when the fly obtains a blood meal. This protozoan causes sleep-
ing sickness in humans and Nagana disease in domestic animals
in central Africa. According to the World Health Organization,
about 55 million people in 36 countries of sub-Saharan Africa
live in regions that are endemic for sleeping sickness, and about
500,000 people become infected every year. If untreated or not
treated properly, the disease is fatal. Treatment of African trypa-
nosomiasis is hindered by the potent toxicity of the drugs being
used, and the difficulty in their administration. No effective vac-
cne or orally-administered drugs have yet been developed [1].

T. brucei has 2 distinct proliferative stages; the bloodstream
form, which causes sleeping sickness in humans, and the pro-
cyclic form, which resides in the tsetse fly. The surface of both
forms is covered by a large amount of glycosylphosphatidyli-
nositol (GPI})-anchored proteins known as variant surface gly-
coproteins (VSG) and procyclins. In the host bloodstream, the
trypanosome cell surface is densely coated with approximately
10 million VSG molecules. T. brucei escapes the host's humoral
immune response by sequentially expressing structurally differ-
ent forms of VSG; the parasites’ genome harbors approximately
1,000 VSG genes. When a tsetse fly takes blood meal from an
infected patient, the ingested bloodstream form differentiates
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into the procyclic form; the differentiation involves the loss of
the VSG surface protein and alteration of procyclin, which is
composed of several million acidic glycoproteins. Proclycins
are thought to function in retarding digestion of the parasite in
the tsetse fly gut [2]. It is thought that the GPI anchor is impor-
tant for survival of both forms of the trypanosome and for estab-
lishment of the infection.

In this review, we focus on the trypanosome GPI biosynthe-
sis pathway. Trypanosomes are not only pathogenically impor-
tant, but also constitute a useful model for elucidating the GPI
biosynthesis pathway. Studies on GPI that will be described here
have indicated the potential for the design of drugs to specifical-
ly inhibit trypanosome GPI biosynthesis. This approach could
be useful in the treatment of trypanosomiasis.

GPI BIOSYNTHESIS BY TRYPANOSOMES

Structures of GPI

Many eukaryotic membrane proteins are covalently linked to
GPI, which has unique structures containing oligosaccharides
and inositol phospholipids, through post-translational modifi-
cation, and are anchored to the membrane by the lipid moieties.
GPI structures of some mammalian proteins, as well as proto-
zoan parasites including T. brucei, have been investigated [3,4].
GPI anchors have a conserved core structure, which is sequen-
tially conjugated by ethanolamine phosphate (EtNP), 3 man-
noses (3Man), glucosamine (GlcN), and inositol phospholipids
(EAN-PO.Manu.Mane.Man..GlcNz,.myo-inositol- 1-PO.-lipid)
(Fig. 1). There can be a wide variety of substituents in the man-
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noside, inositol, or lipid moieties depending on the particular
protein, organism, or developmental stage of an organism. The
GPI anchor of VSG contains a dimyristoylphosphatidylinositol
moiety and galactose (Gal) side chain, whereas that of procyclin
has predominantly 1-O-stearoyl-2-lysophosphatidylinositol and
palmitoylated inositol and harbors a large and heterogeneous-
ly sialylated polylactosamine-containing side chain at the first
mannose instead of at the Gal side chain [3,5-7]. Although the
cell surface density of GPl-anchored proteins is generally not
high in mammalian cells, such cells express a large repertoire
of GPI-anchored proteins. In striking contrast, the cell surface
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Fig. 1. The structure of GPI anchor of VSG from bloodstream form
of trypanosome.
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of the protozoan parasite is densely coated predominantly by a
few species of GPl-anchored proteins [8-13].

GPI biosynthesis

The GPI anchor is synthesized in the endoplasmic reticulum
(ER) by many different enzymes, which sequentially transfer sug-
ars and EtNP to phosphatidylinositol (PI). After synthesis, the
GPI anchor is attached to the protein by GPI transamidase before
being transported to the cell surface [14-17].

The first step: The first step in GPI biosynthesis is initiated
by the transfer of N-acetylglucosamine (GlcNAc) from uridine
diphosphate N-acetylglucosamine (UDP-GIcNAc) to PI, which
generates GICcNACc-PI in the cytoplasmic face of the ER. In mam-
malian cells, the enzyme involved in this step is GPI-N-acetyl-
glucosaminyltransferase (GPI-GnT), an ER membrane-bound
multiprotein complex composed of at least 7 proteins: phos-
phatydylinositol glycan class A; PIG-A, PIG-C, PIG-H, PIG-Q,
PIG-P, dolichyl-phosphate mannosyltransferase polypeptide 2;
DPM2, and PIG-Y [18-20] (Fig. 2-(D), Table 1}. PIG-A has been
implicated in the catalytic activity of the transferase. In mam-
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Fig. 2. The GPI biosynthesis pathways of T. brucei and mammalian cells. The uppermost row indicates the pathway of the procyclic form
of T. brucei. The middle row represents the pathway of the bloodstream form and the lowermost row depicts the pathway of mammalian
cells. The reactions indicated by the circled numbers (D-®) correspond to those described in the text. The involved protein(s) of each step

are summarized in Table 1.
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Table 1. Comparison of trypanosome and mammalian genes involved in GP! biosynthesis

Gene
Step' Enzyme
Marmmals T. brucei
@ GPI-GlcNAc transferase PIG-A
PIG-H
PIG-C
GPH{PIG-Q)
PIG-P
DPM2
PIG-Y
@ de-N-acetylase PIG-L ThGPi12 PIG-L ToGPI12
® Acyltransferase PIG-W
@ GPl-a1-4mannosyltransferase | (MT-1) PIG-M
PIG-X
GPl-a 1-6mannosyltransferase | (MT-11) PIG-V
GPl-a 1-2mannosyltransferase | (MT-1ll) PIG-B ToGPIH0
® Ethanolamine-P-transferase (o the 1st mannose) PIG-N
Ethanolamine-P-transferase (to the 3rd mannose) PIG-O
Ethanolamine-P-transferase (to the 2nd mannose) PIG-F
GPI7(GPI-G)
GPI inositol deacylase PGAP1 TbGPideAc
TbGPIdeAc2
@ Fatty acid transferase ( lipid remodeling) PGAP2 ThGup?
GP| transamidase GPI8 TbGPI8
GAA1 ToGaal
PIG-S {TAATY
PIG-T ToGPI16
PIG-U (TAAZ)Y

'Reaction steps correspond to those indicated in Fig. 2.

mals, somatic mutation of PIG-A, which disrupts the GPI
anchor biosynthesis, is involved in paroxysmal noctural hemo-
globinuria {PNH) [21].

The second step: The resulting GlcdNAc-PLis deacetylated to
yield glucosaminyl-PI (GlcN-PI) (Fig. 2-@) in a reaction cat-
alyzed by a specific zinc metalloenzyme called N-deacetylase
(deNAc, also designated PIG-L in mammals and ThGPI12 in
trypanosomes), which is localized on the cytoplasmic side of the
ER [22-24]. A study using trypanosomes and a Hela cell-free sys-
tern demonstrated that the trypanosome enzyme does not rec-

ognize GlcNAc-PI analogues containing 2-O-octyl-D-myo-inosi- -

tol or L-myo-inositol, in contrast to the Hela enzyme [25].
Moreover, the IC, of potent inhibitors against trypanosome
deNAc was significantly lower (approximately 8 nM) compared
with human deNAc (100 zM), suggesting that the trypanosome
enzyme has different substrate specificity than catalytically simi-
lar mammalian enzymes, which may be exploited as a
chemotherapeutic target against trypanosomiasis {26].

The third step: GleN-PI is likely flipped to the luminal side
of the ER membrane before acylation. After this, T. brucei and
mammalian GPI biosynthetic pathways diverge. In mammals,
acylation of the inositol moiety of GlcN-PI, which is mediated
by inositol acyltransferase (PIG-W), generates GlcN-acyl-PI
before the first mannosylation [27]. In contrast, inositol acyla-
tion in trypanosomes only occurs after the first mannosylation
and generates Man-GlcN-acyl-Pl, indicating that inositol acyla-
tion is not a prerequisite for trypanosome mannosyl transferas-
es (Fig. 2-®) [28,29]. Inositol acyltransferase in trypanosomes
requires the presence of a hydroxyl group at the 4th position on
the first mannose and a free amine on the glucosamine residue
and, thus, mannosylation is required prior to inositol acylation
in trypanosome GPI biosynthesis [30]. Moreover, inositol acy-
lation and deacylation occur on multiple GPI intermediates.
These results suggest that trypanosome inositol acylase and
deacylase have different and broader substrate specificities than
those of mammals. The enzymes responsible for inositol acyla-
tion and deacylation in T. brucei are sensitive to phenylmethyl-
sulfonyl fluoride {31,32], whereas enzymes with similar activi-
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ty in mammalian cells are unaffected [33]. Therefore, inositol
acylation in trypanosomes is a good target for chemotherapy.

In yeasts, the efficient delivery of GlcN-acyl-PI to the first GPI-
mannosyltransferase { GPI-MT-I) requires Arv1, which is a trans-
membrane protein containing potential zinc-binding motifs and
which is a novel mediator of eukaryotic sterol homeostasis [34].
The orthologue of Arvl with significant sequence homology
has been detected only in a Plasmodium genome database but
not in that of Trypanosoma (GeneDB accession no. PF100110)
(data not shown).

The fourth step: In the next step, mannoses are transferred
from dolichol-phosphate-mannose (Dol-P-Man) to GPI inter-
mediates through different glycosidic linkages (Fig. 2-@)). The
first mannose is transferred to position 4 of the GIcN con-
stituent of GlcN-acyl-PI by GPI-MT-I {a complex of PIG-M and
PIGX in humans) [35,36]. However, in T. brucei the first man-
nose is instead transferred to GIcN-PI, indicative of a different
substrate specificity of GPI-MT- I between trypanosome and
mammals. Moreover, GlcN-(2-O-hexadecyl)-phosphatidylinos-
ito}, a synthetic analogue of the GPI intermediate at this step,
selectively inhibits trypanosomal GPI-MT-I, but not human
GPI-MT-I [37]. Thus, GPI-MT-I appears to be a promising target
of trypanosome-specific inhibitors, even though it has not
been identified yet in trypanosomes.

Following the transfer of the first mannose, the second man-
nose is transferred to position 6 of the first mannose in Man-
GlcN-acyl-PI by GPI a1-6 mannosyltransferase (Fig. 2-@) (GPI-
MT-1], PIG-V in humans} [38]. A trypanosome orthologue has
not yet been identified. Subsequently, a third mannose is trans-
ferred by GPI «1-2 mannosyltransferase I1I (GPI-MT-I11, PIG-B
in humans and TbGPI10 in trypanosomes) [39,40]. The obser-
vation that the construction of a knockout mutant of TbGPI10
is possible only when episomal TbGPI10 is introduced is con-
sistent with the suggestion that ThGPI10 is essential for the gro-
wth of the bloodstream form of T. brucei [40]. Identification of
the specific inhibitor against trypanosome GPI-MT-1I] with an
IC, of 1.7 #M from substrate analogs containing amino group
at 2"-position of second mannose in Man,-GIctN-IPC,,, a phos-
phate-linked C,, alkyl chain instead of Man,-GlcN-PI diacylglyc-
erol [30], implicates TbGPI10 as a valid target of trypanosome-
specific inhibitors.

The fifth step: Protein is attached to the GPI through EtNP
that is transferred from phosphatidylethanolamine to position 6

of the third mannose (Fig. 2-®). This reaction is mediated by
PIG-F and PIG-O in mammalian cells [41]. PIG-O is likely to
be a catalytic component of the EtNP transferase forming a
complex with PIG-F, which likely assists in stabilization of the
enzyme complex. However, the orthologues of PIG-F and PIG-O
have not yet been identified in trypanosomes. In mammalian
cells and yeasts, an additional EtNP is added to the first (medi-
ated by PIG-N) [42] or second mannose (mediated by PIG-F
and PIG-G) [43], whereas these modifications do not occur in
trypanosomes.

The penultimate step: In the T. brucei GPI biosynthetic
pathway, inositol acylation takes place only after the formation
of Man-GIcN-PI (Fig. 2-®3). Then, the inositol-linked acyl chain
can be removed or added again to any of the GPI intermediates
bearing 1-3 mannoses with a dynamic equilibrium between inos-
itol acylated and nonacylated species (Fig. 2-®) [29,31,44]. In
mammalian cells, the inositol-linked acyl-chain remains until
the mature GPI anchor is attached to the protein, whereupon it
is removed by GPI inositol deacylase (PGAP1; post-GPI attach-
ment to protein I) [45], indicating that inositol acylation and
deacylation are distinctively separate events in mammalian GPI
biosynthesis. In contrast, inositol is deacylated prior to attach-
ment to VSG in bloodstream form, whereas it remains acylated
in procyclins in the procyclic form. Thus, inositol deacylation
likely occurs more efficiently in the bloodstream form com-
pared with the procyclic form. Previousty, a GPI inositol deacy-
lase (GPldeAc) gene was cloned in trypanosome and its activity
demonstrated using an affinity-purified recombinant protein
[46]. Inositol-acylated GPI biosynthetic intermediates accumu-
lated in a knock-out mutant although some activity remained,
suggesting that another inositol deacylase may be present
[46,47]. Recently, another T. brucei GPI inositol deacylase 2
(GPldeAc2) was cloned and was demonstrated to be essential
in the bloodstream form, with its activity likely being tightly reg-
ulated in the trypanosome life cydle [48]. GPIdeAc2 is homolo-
gous to mammalian PGAP1, sharing the same lipase motif
with catalytic serine [45]. However, these 2 enzymes act at dif-
ferent times, As mentioned above, inositol-deacylation occurs
before attachment to proteins in trypanosomes, whereas the
acyl chain is removed from inositol after attachment to proteins
in mammalian cells [13,29,49]. Moreover, diisopropylfluo-
rophosphate selectively inhibits inositol deacylase activity in
trypanosomes, whereas mammalian inositol deacylase having
a similar activity is not affected [50,51], indicating that the try-
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panosome inositol deacylase has a different substrate specifici-
ty and so is a good candidate drug target.

The final step (lipid remodeling of the GPI anchor): In the
last step of trypanosome GPI biosynthesis, the lipid moiety of
the GPI anchor, sn-1 (C...) and sn-2 fatty acids (a mixture of G-
C.), is replaced with myristate (a saturated fatty acid containing
14 carbon atoms) in a lipid remodeling reaction (Fig. 2-@). This
reaction occurs in the ER before transfer to the VSG protein. The
lipid remodeling is initiated by removal of a longer fatty acid
attached to the sn-2 position of glycolipid A’ to form glycolipid 6,
prior to acylation by attachment of myristate using myristoyl-CoA
as a donor. As a next step, deacylation occurs at the sn-1 position
to form the lyso species glycolipid 6" . The second myristate is
then incorporated into the sn-1 position, forming dimyristated
GPI {glycolipid A) on which VSG is attached. Thus, lipid remod-
eling consists of sequential deacylation and reacylation reactions.
Recently, it has been reported that myristate transfer in GPI fatty
acid remodeling in trypanosomes is mediated by TbGup1 [52].
However, the complete enzyme repertoire involved in lipid re-
modeling in trypanosomes remains unclear. In humans, fatty
acid remodeling occurs in the Golgi after attachment of protein
to the GPI anchor. Removal of the sn-2 unsaturated fatty acid
from the lipid moiety of human GPI anchor requires PGAP3
[53} and replacement with stearic acid {C...) requires PGAP2
[54], while the sn-1 saturated fatty acid is retained in both the
GP! precursor and GP! anchored protein.

GPI transamidation

After synthesis, the GPI anchor is attached to the protein by
GP1 transamidase before being transported to the cell surface
(Fig. 2-®) |14-17]. GPI transamidase recognizes and cleaves the
signal sequence at the C-terminus of nascent proteins and re-
places it with the preassembled GPI anchor. In humans, GPI
transamidase comprises at least 5 polypeptides (GAA1, GPIS,
PIG-S, PIG-T, and PIG-U) [55,56]. The trypanosome GPI tran-
samidase is also multi-enzyme complex in that 3 components
(TbGAA1, TbGPI8, and TbGPI16) are homologous to human
components (GAA1, GPI8, and PIG-T, respectively), and 2 other
components (TTA1 and TTA2) are unique to the ttypanosome
enzyme [57]. TbGPI8 (GPI8 in human)} is suggested to be the
catalytic component responsible for cleavage of GPl-attachment
signal sequences, and which is stabilized by the association with
ThGP116 through disulfide bond like mammalian GPI8 [48,55,
57-66]. As mentioned above, the mammalian GP! transami-

dase must recognize diverse and structurally different proteins
[67,68], whereas that of trtypanosome processes limited kinds
of proteins but which is highly expressed. Moreover, human
GPI anchored protein that replaces its GPI attachment signal
sequences with those of VSG does not readily become GPllinked
[69], indicating that trypanosome and mammalian GPI transami-
dases have different specificities against GPI anchored proteins.
In addition to these protein differences, the GPI precursors them-
selves, which are recognized by the GPI transamidase, are struc-
turally different. In mammalian GPIs, mannose residues are
modified by extra EtNPs, whereas this modification does not
ocaur in trypanosome, indicating that humans and trypanoso-
mes have also different specificities against GPI anchor. Therefore,
GPI mansamidase in trypanosomes may be a good target for the
development of anti-trypanosomal drugs.

CONCLUSION

Intensive studies of GPI for decades have revealed significant
differences between mammalian and trtypanosome GPI biosyn-
thesis (Table 1). Compared with mammalian cells, trypanoso-
mes utilize GPI for membrane anchoring of the major surface
coat protein essential for its growth and survival. The specific
steps in GPI biosynthesis may be potential targets for anti-try-
panosomal agents. Identification of the enzymes that catalyze
the specific biosynthetic steps and determination of their bio-
chemical properties will provide the clues for revealing the speci-
ficity of the enzymes in trypanosomal and mammalian cells.
Inhibitors that specifically inhibit trtypanosome GPI biosynthe-
sis without affecting the host will be a good chemotherapeutic
treatment to combat trypanosomiasis. Further studies concern-
ing inhibitor screening for inhibitory activity against trypanosome
GPI biosynthesis are necessary to realize the anti-trypanosomal
chemotherapy.
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