DOI QR코드

DOI QR Code

Comparative Analysis of Expressed Sequence Tags from Flammulina velutipes at Different Developmental Stages

  • Joh, Joong-Ho (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Kim, Kyung-Yun (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Lim, Jong-Hyun (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Son, Eun-Suk (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Hye-Ran (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University) ;
  • Park, Young-Jin (Genomics Division, National Academy of Agricultural Science, Rural Development Administration) ;
  • Kong, Won-Sik (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Yoo, Young-Bok (Mushroom Research Division, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Lee, Chang-Soo (Department of Applied Biochemistry, College of Biomedical and Health Science, Konkuk University)
  • Published : 2009.08.31

Abstract

Flammulina velutipes is a popular edible basidiomycete mushroom found in East Asia and is commonly known as winter mushroom. Mushroom development showing dramatic morphological changes by different environmental factors is scientifically and commercially interesting. To create a genetic database and isolate genes regulated during mushroom development, cDNA libraries were constructed from three developmental stages of mycelium, primordium, and fruit body in F. velutipes. We generated a total of 5,431 expressed sequence tags (ESTs) from randomly selected clones from the three cDNA libraries. Of these, 3,332 different unique genes (unigenes) were consistent with 2,442 (73%) singlets and 890 (27%) contigs. This corresponds to a redundancy of 39%. Using a homology search in the gene ontology database, the EST unigenes were classified into the three categories of molecular function (28%), biological process (29%), and cellular component (6%). Comparative analysis found great variations in the unigene expression pattern among the three different unigene sets generated from the cDNA libraries of mycelium, primordium, and fruit body. The 19-34% of total unigenes were unique to each unigene set and only 3% were shared among all three unigene sets. The unique and common representation in F. velutipes unigenes from the three different cDNA libraries suggests great differential gene expression profiles during the different developmental stages of F. velutipes mushroom.

Keywords

References

  1. Altschul, S. F., T. L. Madden, A. A. Schaffer, J. Zhang, Z. Zhang, D. J. Miller, and M. Lipman. 1997. Gapped BLAST and PSI-BLAST: A new generation of protein database search programs. Nucleic Acid Res. 25: 3389-3402 https://doi.org/10.1093/nar/25.17.3389
  2. Ando, A., A. Harada, K. Miura, and Y. Tamai. 2001. A gene encoding a hydrophobin, fvh1, is specifically expressed after the induction of fruiting in the edible mushroom Flammulina velutipes. Curr. Genet. 39: 190-197 https://doi.org/10.1007/s002940100193
  3. Asgeirsd$\acute{o}$ttir, S. A., O. M. de Vries, and J. G. Wessels. 1998. Identification of three differentially expressed hydrophobins in Pleurotus ostreatus (oyster mushroom). Microbiology 144: 2961- 2969 https://doi.org/10.1099/00221287-144-11-2961
  4. Ashburner, M., C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J. M. Cherry, et al. 2000. Gene ontology: Tool for the unification of biology. Nat. Genet. 25: 25-29 https://doi.org/10.1038/75556
  5. Azuma, T., I. Yao, D. Kim, Y. Sakuma, Y. Kojima, and K. Miura. 1996. Sequence and characterization of the genomic clone of the FDS gene from the basidiomycete Flammulina velutipes. Mokuzai Gakkaishi 42: 875-880
  6. Borchers, A. T., C. L. Keen, and M. E. Gershwin. 2004. Mushrooms, tumors, and immunity: An update. Exp. Biol. Med. (Maywood) 229: 393-406 https://doi.org/10.1177/153537020422900507
  7. Endo, H., S. Kajiwara, O. Tsunoka, and K. Shishido. 1994. A novel cDNA, priBc, encoding a protein with a Zn(II)2Cys6 zinc cluster DNA-binding motif, derived from the basidiomycete Lentinus edodes. Gene 139: 117-121 https://doi.org/10.1016/0378-1119(94)90533-9
  8. Ewing, B., L. Hiller, M. C. Wendl, and P. Green. 1998. Basecalling of automated sequencer traces using Phred. I. Accuracy assessment. Genome Res. 8: 175-185 https://doi.org/10.1101/gr.8.3.175
  9. Guettler, S., E. N. Jackson, S. A. Lucchese, L. Honaas, A. Green, C. T. Hittinger, Y. Tian, W. W. Lilly, and A. C. Gathman. 2003. ESTs from the basidiomycete Schizophyllum commune grown on nitrogen-replete and nitrogen-limited media. Fungal Genet. Biol. 39: 191-198 https://doi.org/10.1016/S1087-1845(03)00017-3
  10. Joh, J. H., B. G. Kim, W. S. Kong, Y. B. Yoo, N. K. Kim, H. R. Park, B. G. Cho, and C. S. Lee. 2004. Cloning and developmental expression of a metzincin amily metalloprotease cDNA from oyster mushroom Pleurotus ostreatus. FEMS Microbiol. Lett. 239: 57-62 https://doi.org/10.1016/j.femsle.2004.08.020
  11. Joh, J. H., S. H. Lee, J. S. Lee, K. H. Kim, S. J. Jeong, W. H. Youn, et al. 2007. Isolation of genes expressed during the developmental stages of the oyster mushroom, Pleurotus ostreatus, using expressed sequence tags. FEMS Microbiol. Lett. 276: 19- 25 https://doi.org/10.1111/j.1574-6968.2007.00879.x
  12. Kim, D., T. Azuma, A. Harada, Y. Sakuma, A. Ando, Y. Tamai, and K. Miura. 1999. Cloning and sequence analysis of a cDNA for the gene FVFD30, specifically expressed during fruiting body development in Flammulina velutipes. Mush. Sci. Biotech. 7: 95-99
  13. Kim, D. and T. Azuma. 2002. Sequence and characterization of the genomic clone of the FVFD16 and FVFD30 gene isolated from Flammulina velutipes. Korean J. Mycol. 28: 26-31
  14. Kondoh, O., A. Muto, S. Kajiwara, J. Takagi, Y. Saito, and K. Shishido. 1995. A fruiting body-specific cDNA, mfbAc, from the mushroom Lentinus edodes encodes a high-molecular-weight cell-adhesion protein containing an Arg-Gly-Asp motif. Gene 154: 31-37 https://doi.org/10.1016/0378-1119(94)00798-W
  15. Kong, W. S., Y. H. Cho, C. S. Jhune, Y. B. Yoo, and K. H. Kim. 2004. Breeding of Flammulina velutipes strains adaptable to elevated-temperature. Mycobiology 32: 11-16 https://doi.org/10.4489/MYCO.2004.32.1.011
  16. Kues, U. and Y. Liu. 2000. Fruiting body production in basidiomycetes. Appl. Microbiol. Biotechnol. 54: 141-152 https://doi.org/10.1007/s002530000396
  17. Kupfer, D. M., C. A. Reece, S. W. Clifton, B. A. Roe, and R. A. Prade. 1997. Multicellular ascomyceteous fungal genomes contain more than 8000 genes. Fung. Genet. Biol. 21: 364-372 https://doi.org/10.1006/fgbi.1997.0982
  18. Lee, S. H., B. G. Kim, K. J. Kim, J. S. Lee, D. W. Yun, J. H. Hahn, et al. Yoo. 2002. Comparative analysis of sequences expressed during the liquid-cultured mycelia and fruit body stages of Pleurotus ostreatus. Fungal Genet. Biol. 35: 115-134 https://doi.org/10.1006/fgbi.2001.1310
  19. Linder, M. B., G. R. Szilvay, T. Nakari-Setala, and M. E. Penttila. 2005. Hydrophobins: The protein-amphiphiles of filamentous fungi. FEMS Microbiol. Rev. 29: 877-896 https://doi.org/10.1016/j.femsre.2005.01.004
  20. Ma, A., L. Shan, N. Wang, L. Zheng, L. Chen, and B. Xie. 2007. Characterization of a Pleurotus ostreatus fruiting body-specific hydrophobin gene, Po.hyd. J. Basic Microbiol. 47: 317-324 https://doi.org/10.1002/jobm.200710317
  21. Martin, F., A. Aerts, D. Ahren, A. Brun, E. G. Danchin, F. Duchaussoy, et al. 2008. The genome of Laccaria bicolor provides insights into mycorrhizal symbiosis. Nature 452: 88-92 https://doi.org/10.1038/nature06556
  22. Narai, A., H. Watanabe, T. Iwanaga, T. Tomita, and M. Shimizu. 2004. Effect of a pore-forming protein derived from Flammulina velutipes on the Caco-2 intestinal epithelial cell monolayer. Biosci. Biotechnol. Biochem. 68: 2230-2238 https://doi.org/10.1271/bbb.68.2230
  23. Nielsen, P. S., A. J. Clark, R. P. Oliver, M. Huber, and P. D. Spanu. 2001. HCf-6, a novel class II hydrophobin from Cladosporium fulvum. Microbiol. Res. 156: 59-63 https://doi.org/10.1078/0944-5013-00088
  24. Ospina-Giraldo, M. D., P. D. Collopy, C. P. Romaine, and D. J. Royse. 2000. Classification of sequences expressed during the primordial and basidiome stages of the cultivated mushroom Agaricus bisporus. Fungal Genet. Biol. 29: 81-94 https://doi.org/10.1006/fgbi.2000.1189
  25. Park, S. K., M. M. Peñas, L. Ramírez, and A. G. Pisabarro. 2006. Genetic linkage map and expression analysis of genes expressed in the lamellae of the edible basidiomycete Pleurotus ostreatus. Fungal Genet. Biol. 43: 376-387 https://doi.org/10.1016/j.fgb.2006.01.008
  26. Parr, C. L., R. A. Keates, B. C. Bryksa, M. Ogawa, and R. Y. Yada. 2007. The structure and function of Saccharomyces cerevisiae proteinase A. Yeast 24: 467-480 https://doi.org/10.1002/yea.1485
  27. Sakamoto, Y., A. Ando, Y. Tamai, and T. Yajima. 2007. Pileus differentiation and pileus-specific protein expression in Flammulina velutipes. Fungal Genet. Biol. 44: 14-24 https://doi.org/10.1016/j.fgb.2006.06.002
  28. Schuren, F. H. J. and J. G. H. Wessels. 1990. Two genes specifically expressed in fruiting dikaryon of Schizophyllum commune: Homologies with a gene not regulated by matingtype genes. Gene 90: 199-205 https://doi.org/10.1016/0378-1119(90)90180-Y
  29. Suizu, T., G. L. Zhou, Y. Oowatari, and M. Kawamukai. 2008. Analysis of expressed sequence tags (ESTs) from Lentinula edodes. Appl. Microbiol. Biotechnol. 79: 461-470 https://doi.org/10.1007/s00253-008-1441-2
  30. Watanabe, H., A. Narai, and M. Shimizu. 1999. Purification and cDNA cloning of a protein derived from Flammulina velutipes that increases the permeability of the intestinal Caco-2 cell monolayer. Eur. J. Biochem. 262: 850-857 https://doi.org/10.1046/j.1432-1327.1999.00440.x
  31. Yamada, M., S. Sakuraba, K. Shibata, S. Inatomi, M. Okazaki, and M. Shimosaka. 2005. Cloning and characterization of a gene coding for a hydrophobin, Fv-hyd1, specifically expressed during fruiting body development in the basidiomycete Flammulina velutipes. Appl. Microbiol. Biotechnol. 67: 240-246 https://doi.org/10.1007/s00253-004-1776-2

Cited by

  1. Electrophoretic karyotyping and construction of a bacterial artificial chromosome library of the winter mushroom Flammulina velutipes vol.165, pp.4, 2009, https://doi.org/10.1016/j.micres.2009.06.003
  2. 팽이버섯의 유전적 변이 vol.21, pp.10, 2009, https://doi.org/10.5352/jls.2011.21.10.1434
  3. Flammulina velutipe의 국내 균주와 외래 균주 간의 ITS region을 이용한 계통학적 유연관계 분석 vol.22, pp.1, 2009, https://doi.org/10.5352/jls.2012.22.1.62
  4. Whole Genome and Global Gene Expression Analyses of the Model Mushroom Flammulina velutipes Reveal a High Capacity for Lignocellulose Degradation vol.9, pp.4, 2009, https://doi.org/10.1371/journal.pone.0093560
  5. The first set of expressed sequence tags (EST) from the medicinal mushroom Agaricus subrufescens delivers resource for gene discovery and marker development vol.98, pp.18, 2009, https://doi.org/10.1007/s00253-014-5844-y
  6. Cloning and Expression Analysis of Phenylalanine Ammonia-Lyase Gene in the Mycelium and Fruit Body of the Edible Mushroom Flammulina velutipes vol.43, pp.3, 2015, https://doi.org/10.5941/myco.2015.43.3.327
  7. Comparative transcriptome analysis reveals potential fruiting body formation mechanisms in Morchella importuna vol.9, pp.1, 2009, https://doi.org/10.1186/s13568-019-0831-4