GaN epitaxy growth by low temperature HYPE on $CoSi_2$ buffer/Si substrates

실리콘 기판과 $CoSi_2$ 버퍼층 위에 HVPE로 저온에서 형성된 GaN의 에피텍셜 성장 연구

  • Published : 2009.08.31

Abstract

We fabricated 40 nm-thick cobalt silicide ($CoSi_2$) as a buffer layer, on p-type Si(100) and Si(111) substrates to investigate the possibility of GaN epitaxial growth on $CoSi_2$/Si substrates. We deposited GaN using a HVPE (hydride vapor phase epitaxy) with two processes of process I ($850^{\circ}C$-12 minutes + $1080^{\circ}C$-30 minutes) and process II ($557^{\circ}C$-5 minutes + $900^{\circ}C$-5 minutes) on $CoSi_2$/Si substrates. An optical microscopy, FE-SEM, AFM, and HR-XRD (high resolution X-ray diffractometer) were employed to determine the GaN epitaxy. In case of process I, it showed no GaN epitaxial growth. However, in process II, it showed that GaN epitaxial growth occurred. Especially, in process II, GaN layer showed selfaligned substrate separation from silicon substrate. Through XRD ${\omega}$-scan of GaN <0002> direction, we confirmed that the combination of cobalt silicide and Si(100) as a buffer and HVPE at low temperature (process II) was helpful for GaN epitaxy growth.

실리콘 기판에 GaN 에피성장을 확인하기 위해, P형 Si(100), Si(111) 기판 전면에 버퍼층으로 40 nm 두께의 코발트실리사이드를 형성시켰다. 형성된 코발트실리사이드 층에 연속으로 HVPE(hydride vapor phase epitaxy)로 하나는 $850^{\circ}C$-12분 + $1080^{\circ}C$-30분(공정I)과, 또 하나 조건은 $557^{\circ}C$-5분 + $900^{\circ}C$-5분(공정II) 조건으로 각각 나누어 진행하여 보았다. GaN의 에피성장을 광학현미경, 주사전자현미경, 주사탐침현미경, 그리고 HR-XRD로 확인하였다. 공정I로는 GaN의 에피성장이 진행되지 않았으며, 공정II에서는 에피성장이 진행되었다. 특히 공정 II는 열팽창에 의해 실리콘 기판과의 자가정렬적인 기판분리 현상을 보였으며, XRD로 GaN의 0002 방향의 결정성 (crystallinity)을 ${\omega}$-scan으로 확인한 결과(100)면 방향의\ 실리콘과 코발트실리사이드를 버퍼층으로 활용하고 저온에서 HVPE를 진행한 조합이 GaN의 에피성장에 유리하였다.

Keywords

References

  1. W.M. Yen, S. Shionoya and H. Yamamoto, Phosphor Handbook, 2nd ed., P.121-122, CRC Press, New York, U.S.A. (2007)
  2. X. Guo and E.F. Schubert, "Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates", Appl. Phys. Lett. 78 (2001) 3337 https://doi.org/10.1063/1.1372359
  3. W.C. Peng and Y.S. Wu, Appl. Phys. Lett. 84 (2004) 1841 https://doi.org/10.1063/1.1682696
  4. R.H. Horng, S.H. Huang, D.S. Wuu and C.Y. Chiu, Appl. Phys. Lett. 82 (2004) 4011
  5. J.-S. Ha, S.W. Lee, H.J. Lee, H.-J. Lee, S.H. Lee, H. Goto, T. Kato, Katsushi Fujii, M.W. Cho and T. Yao, "The fabrication of vertical light-emitting diodes using chemical lift-off process", IEEE Photon. Technol. Lett. 20 (2008) 175
  6. K. Kawasaki, C. Koike, Y. Aoyagi and M. Takeuchi, "Vertical AlGaN deep ultraviolet light emitting diode at 322 nm fabricated by the laser lift-off technique", Appl. Phys. Lett. 89 (2006) 26114 https://doi.org/10.1063/1.2424668
  7. S.J. Wang, K.M. Uang, S.L. Chen, Y.C. Yang, S.C. Chang, T.M. Chen, C.H. Chen and B.W. Liou, "Use of patterned laser liftoff process and electroplating nickel layer for the fabrication of vertical-structured gan-based light-emitting diodes", Appl. Phys. Lett. 87 (2005) 011111 https://doi.org/10.1063/1.1993757
  8. C.A. Tran, C.F. Chu, C.C. Cheng, W.H. Liu, J.Y. Chu, H.C. Cheng, F.H. Fan, J.K. Yen and T. Doan, "High brightness GaN vertical light emitting diodes on metal alloyed substrate for general light application", J. Crys. Growth 298 (2007) 722 https://doi.org/10.1016/j.jcrysgro.2006.10.187
  9. H. Amano, N. Sawaki, I. Akasaki and Y. Toyoda, Appl. Phys. Lett. 68 (1986) 353
  10. H. Morkog, S. Strite, G.B. Gao, M.E. Lin, B. Sverdlov and M. Burns, J. Appl. Phys. 76 (1994) 1363 https://doi.org/10.1063/1.358463
  11. C.R. Kim, J.Y. Lee, C.M. Shin, J.Y. Leem, H. Ryu, J.H. Chang, H.C. Lee, C.S. Son, W.J. Lee, W.G. Jung, S.T. Tan, J.L. Zhao and X.W. Sun, "Effects of annealing temperature of buffer layer on structural and optical properties of ZnO thin film grown by atomic by atomic layer deposition", Solid State Communication 148 (2008) 395 https://doi.org/10.1016/j.ssc.2008.09.034
  12. H.J. Lee, S.W. Lee, H. Goto, H.J. Lee, J.S. Ha, K. Fujii, M.W. Cho, T. Yao and S.K. Hong, "The role of lowtemperature buffer layer for thick GaN growth on spphire", J. Crys. Growth 310 (2008) 920 https://doi.org/10.1016/j.jcrysgro.2007.11.105
  13. A.R. Woll, R.L. Headrick, S. Kycia and J.D. Brock, Phys. Rev. Lett. 83 (1999) 4349 https://doi.org/10.1103/PhysRevLett.83.4349
  14. G. Koblmuller, P. Pongratz, R. Averbeck and H. Riechert, Phys. Status Solidi A 194 (2002) 515 https://doi.org/10.1002/1521-396X(200212)194:2<515::AID-PSSA515>3.0.CO;2-N
  15. A.D. Williams and T.D. Moustakas, "Formation of large-area freestanding gallium nitride substrates by natural stress-induced separation of GaN and sapphire", J. Crys. Growth 300 (2007) 37 https://doi.org/10.1016/j.jcrysgro.2006.10.224
  16. S. Xue, X. Zhang, R. Huang and H. Zhuang, "Effects of the sputtering time of ZnO buffer layer on the quality of GaN thin films", Appl. Sur. Sci. 254 (2008) 6766 https://doi.org/10.1016/j.apsusc.2008.04.083
  17. E. Arslan, M.K. Ozturk, S. Ozcelik and E. Ozbay, "The effect of SixNv interlayer on the quality of GaN epitaxial layers grown on Si(111) substrates by MOCVD", Current Appl. Phys. 9 (2009) 472 https://doi.org/10.1016/j.cap.2008.04.008
  18. D. Mangelinck, J.Y. Dai, J.S. Pan and S.K. Lahiri, Appl. Phys. Lett. 75 (1999) 1736 https://doi.org/10.1063/1.124803
  19. K. Maex, Mater. Sci. Engin. R11 (1993) 53
  20. F. Dwikusuma, J. Mayer and T.F. Kuech, "Nucleation and initial growth kinetics of GaN on spphire substrate by hydride vapor phase epitzxy", J. Crys. Growth 258 (2003) 65 https://doi.org/10.1016/S0022-0248(03)01506-9
  21. C.K. Kim, M. Yang, W.S. Lee, J.H. Yi, S.W. Kim, Y.H. Choi, T.K. Yoo and S.T. Kim, "Formation and characteristic of inversion domain in GaN grown by hydride vapor-phase epitaxy", J. Crys. Growth 213 (2003) 235 https://doi.org/10.1016/S0022-0248(00)00364-X