Characterization of ruby single crystal grown by $PbO-B_2O_3$ flux

$PbO-B_2O_3$ 플럭스에 의해 성장한 루비단결정의 특성평가

  • Cho, Min-Hee (Department of Materials & Chemical Engineering, Hanyang University) ;
  • Seo, Jin-Gyo (Division of Materials Science & Engineering, Hanyang University) ;
  • Ahn, Yong-Kil (Department of Materials & Chemical Engineering, Hanyang University) ;
  • Park, Jong-Wan (Division of Materials Science & Engineering, Hanyang University)
  • 조민희 (한양대학교 공과대학원 보석학과) ;
  • 서진교 (한양대학교 공과대학 신소재공학과) ;
  • 안용길 (한양대학교 공과대학원 보석학과) ;
  • 박종완 (한양대학교 공과대학 신소재공학과)
  • Published : 2009.08.31

Abstract

In this study, ruby single crystals were successfully grown by flux method using an alumina crucible. The alumina crucible can be a substitute for the platinum crucible of high price. The ruby single crystals were grown in the temperature range of $915{\sim}1350^{\circ}C$ for 240 h, using $PbO-B_2O_3$ mixture. The grown ruby crystals with 9.02 ${\times}$ 6.36 mm in size exhibited red color and were transparent. The optical and structural properties were examined by UV-VIS spectrometry, FTIR and XRD. The optical properties of theses crystals were similar to those of the natural ruby and synthetic ruby grown by other methods.

기존의 합성방법에 사용되는 백금 도가니의 단점을 보완할 수 있는 알루미나 도가니를 사용하여 천연 및 기존의 합성루비와 유사한 적색의 투명한 결정을 성장시켰다. $PbO-B_2O_3$ 가 흔합된 플럭스를 사용하여 $915{\sim}1350^{\circ}C$의 온도에서 약 240시간 실험 후 최대 9.02 ${\times}$ 6.36 mm 투명한 적색의 결정이 성장되었다. 이 결정을 보석학적 기초검사를 통하여 굴절률, 내포물, 비중 등의 특성과 FT-IR, UV-VIS spectrometer 및 XRD 를 사용하여 기존의 합성루비 및 천연루비의 특성과 비교분석하였다.

Keywords

References

  1. K. Teshima, A.T. Suzuki and S. Oishi, "Unique coating crystals on an aluminum oxide wall by flux evaporation", Chemistry Letters 34 (2005) 1620 https://doi.org/10.1246/cl.2005.1620
  2. S.N. Yoon, "Gem identification" (Human Resources Development Service of Korea, Seoul, 2005) p. 337
  3. W.S. Kim, "Gemology" (Woosungmunwha, Seoul, 2002) p. 325
  4. S. Oishi, K. Teshima and H. Kondo, "Flux growth of hexagonal bipyramidal ruby crystals", Journal of the American Chemical Society 126 (2004) 4768 https://doi.org/10.1021/ja049678v
  5. M. Sam, F. Emmanuel, E.S. James, D. Bertrand and M.L. Brendan, "Separating natural and synthetic rubies on the basis of trace-element chemistry", Gems and Gemology 34 (1998) 80 https://doi.org/10.5741/GEMS.34.2.80
  6. N.I. Leonyuk, A.V. Lyutin, V.V. Maltsev, S.N. Barilo, G.L. Bychkov, L.A. Kurnevich, G.A. Emelchenko, V.M. Masalov and A.A. Zhokhov, "Growth and morphology of ruby crystals with unusual chromium concentration", Journal of Crystal Growth 280 (2005) 551 https://doi.org/10.1016/j.jcrysgro.2005.04.012
  7. H.A. Hanni, K. Schmetzer and H.J. Bernhardt, "Synthetic rubies by Douros: A new challenge for gemologists", Gems and Gemology 30 (1994) 72 https://doi.org/10.5741/GEMS.30.2.72
  8. K. Schmetzer, C.P. Smith, George Bosshart and Olaf Medenbach, "Twinning in Ramaura synthetic rubies", Journal of Gemmology 24 (1994) 87 https://doi.org/10.15506/JoG.1994.24.2.87
  9. K. Nassau, "The physics and chemistry of color", (Wiley, New york, 1983) p. 89
  10. Skoog, Holler, Nieman, "Principles of instrumental analysis" (Jauacademy, Seoul, 2000) p. 480
  11. A. Peretti, K. Schmetzer, H.J. Bernhardt and F. Mouawad, "Rubies from Mong Hsu", Gems and Gemology 31 (1994) 2
  12. H.A. Peretti and C.P. Smith, "Letter to the editor", Journal of Gemmology 24 (1994) 61 https://doi.org/10.15506/JoG.1994.24.1.61
  13. R.F. Belt, "Hydrothermal ruby: Infrared spectra and Xray topography", Journal of Applied Physics 38 (1967) 2688 https://doi.org/10.1063/1.1709972
  14. C.P. Smith, "A contribution to understanding the infrared spectra of Mong Hsu rubies", Journal of Gemmology 24 (1995) 321 https://doi.org/10.15506/JoG.1995.24.5.321
  15. C.P. Smith and N. Surdez, "The Mong Hsu ruby: a new type of Burmese ruby", Jewelsiam 4 (1994) 82