Synthetic and characterization of Na-tetrasilicic fluorine mica by skull melting method

스컬용융법에 의한 Na사규소운모 합성 및 특성평가

  • Seok, Jeong-Won (Department of Gemological Engineering, Dongshin University) ;
  • Choi, Jong-Geon (Department of Gemological Engineering, Dongshin University)
  • 석정원 (동신대학교 보석공학과) ;
  • 최종건 (동신대학교 보석공학과)
  • Published : 2009.08.31

Abstract

Na-tetrasilicic fluorine mica powders were synthesized by skull melting method. The staring materials having chemical composition of $Mg_3(OH)_2Si_4O_{10}:Na_2SiF_6:SiO_2=8.3:24.8:66.9$ mol% were charged into a cold crucible of 13 cm in diameter and 14cm in height and heated by R.F. generator at working frequency of 2.84 MHz. The materials were maintained for 1hr as a molten state and cooled down in the container. In this study, the specific electric resistance of mica was estimated and the columnar and plate shaped mica were synthesized.

스컬용융법에 의해 Na사규소운모를 합성하였다. $Mg_3(OH)_2Si_4O_{10}:Na_2SiF_6:SiO_2=8.3:24.8:66.9$ mol% 비율로 혼합한 출발원료를 ${\phi}13{\times}H14cm$의 냉각도가니에 채우고 2.84MHz 출력주파수의 고주파발진기를 이용하여 가열하였다. 원료는 융액상태에서 1시간 유지하였으며 도가니 내에서 냉각시켰다. 운모의 비저항은 추정하였으며, 원주모양과 판상으로 합성할 수 있었다.

Keywords

References

  1. D.U. Tulyaganov, S. Agathopoulos, H.R. Fernandes, J.M. Ventura and J.M.F. Ferreira, "Preparation and crystallization of glasses in the system tetrasilicic mica-fluorapatite-diopside", J. European Ceramic Society 24 (2004) 3521 https://doi.org/10.1016/j.jeurceramsoc.2003.11.026
  2. J.W. Seok and J.K. Choi, "Conditions of skull melting system for rutile single crystals growth", J. Korean Growth Cryst. Technol. 16 (2006) 141
  3. D. Divakar, D. Manikandan and T. Sivakumar, "Tetra silicic mica - A synthetic support for nanoparticle generation and catalytic applications", Catal. Communic. 9 (2008) 2433 https://doi.org/10.1016/j.catcom.2008.06.008
  4. T. Yamaguchi, S. Taruta, T. Yamakami and K. Kitajima, "Preparation of $M^0$ metal/alumina-pillared mica composites (M = Cu, Ni) by in situ reduction of interlayer $M^{2+}$ ions of alumina-pillared fluorine micas", Mater. Res. Bull. 42 (2007) 2143 https://doi.org/10.1016/j.materresbull.2007.01.009
  5. H. Tateyama, S. Nishimura, K. Tsunmematsu, K. Jinnai, Y. Adachi and M. Kimura, "Synthesis of expandable mica from talc", Clays and Clay Minerals 40 (1992) 180 https://doi.org/10.1346/CCMN.1992.0400207
  6. A. Muiznieks, G. Raming, A. Muhlbaur, C. Gross, W. Assmus and C. Stenzel, "Power consumption of skull melting, Part II: Numerical calculation of the shape of the molten zone and comparison with experiment", Cryst. Res. Technol. 34 (1999) 329 https://doi.org/10.1002/(SICI)1521-4079(199903)34:3<329::AID-CRAT329>3.0.CO;2-I
  7. R.F. Sekerka, R.A. Hartzell and B.J. Farr, "Instability phenomena during the RF heating and melting of ceramics", J. Cryst. Growth 50 (1980) 787 https://doi.org/10.1016/0022-0248(80)90140-2
  8. C. Gross, W. Assmus, A. Muiznieks, G. Raming, A. Muhlbauer and C. Stenzel, "Power consumption of skull melting, Part I: Analytical aspects and experiments", Cryst. Res. Technol. 34 (1999) 324 https://doi.org/10.1002/(SICI)1521-4079(199903)34:3<319::AID-CRAT319>3.0.CO;2-M
  9. T. Yamaguchi, T. Yoshimura, T. Yamakami, S. Taruta and Kunio Kitajima, "Preparation of novel porous solids from alumina-pillared fluorine micas by acid-treatment", Microp. Mesop. Mater. 111 ( 2008) 286 https://doi.org/10.1016/j.micromeso.2007.08.003
  10. H. Dai, H. Li and F. Wang, "An alternative process for the preparation of Cu-coated mica composite powder", Surf. Coat. Technol. 201 (2006) 2861 https://doi.org/10.1016/j.surfcoat.2006.05.043