Synthesis of $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powder by mechanical alloying

기계적합금화에 의한 $Fe/Al_2O_3$$Fe/TiO_2$계 나노복합분말의 제조

  • Lee, Seong-Hee (Dept. of Advanced Materials Science and Engineering, Mokpo National University) ;
  • Lee, Chung-Hyo (Dept. of Advanced Materials Science and Engineering, Mokpo National University)
  • 이성희 (목포대학교 신소재공학과) ;
  • 이충효 (목포대학교 신소재공학과)
  • Published : 2009.08.31

Abstract

Nanocomposite formation of metal-metal oxide systems by mechanical alloying (MA) has been investigated at room temperature. The systems we chose are the $Fe_3O_4$-M (M = AI, Ti), where pure metals are used as reducing agent. It is found that $Fe/Al_2O_3$ and $Fe/TiO_2$ nanocomposite powders in which $Al_2O_3$ and $TiO_2$ are dispersed in ${\alpha}$-Fe matrix with nano-sized grains are obtained by MA of $Fe_3O_4$ with Al and Ti for 25 and 75 hours, respectively. It is suggested that the shorter MA time for the nanocomposite formation in $Fe/Al_2O_3$ is due to a large negative heat associated with the chemical reduction of magnetite by aluminum. X-ray diffraction results show that the average grain size of ${\alpha}$-Fe in $Fe/TiO_2$ nanocomposite powders is in the range of 30 nm. The change in magnetic properties also reflects the details of the solid-state reduction of magnetite by pure metals during MA.

본 연구에서는 $Fe/Al_2O_3$$Fe/TiO_2$계 나노복합분말을 제조하기 위하여 실온 기계적 합금화법(MA)을 적용하였다. $Fe_3O_4-M$(M= AI, Ti)이고 여기서 순금속 Al 및 Ti은 고상반응 시 환원제로서 선택하였다. $Fe_3O_4$-순금속의 각각 25시간 및 75시간 MA 처리한 결과 $Fe/Al_2O_3$$Fe/TiO_2$ 나노복합분발이 얻어졌으며, 이것은 나노결정립의 ${\alpha}$-Fe 기지에 $Al_2O_3$$TiO_2$가 각각 미세하게 분산된 나노복합분말임을 알 수 있었다. 또한 Fe$_3$O$_4$-AI계에서 보다 짧은 반응 시간에 복합분말이 생성되는 것은 $Fe_3O_4$의 Al에 의한 환원반응 시 큰 반응열에 기인하는 것으로 사료된다. MA법으로 제조된 $Fe/TiO_2$ 복합분말의 X선 회절분석으로부터 ${\alpha}$-Fe 결정립 크기는 30 nm 임을 알 수 있었다. 또한 MA 과정 중 시료의 자기 측정으로부터 $Fe_3O_4$의 순금속 Al 및 Ti 에 의한 고상환원반응 과정을 자세히 관찰할 수 있었다.

Keywords

References

  1. R. Schwarz and C.C. Koch, "Formation of amorphous alloys by the mechanical alloying of crystalline powders of pure metals and powders of intermetallics", Appl. Phys. Lett. 49 (1986) 146 https://doi.org/10.1063/1.97206
  2. C.C. Koch, O.B. Cavin, C.G. Mckamey and J.O. Scarbrough, "Preparation of amorphous $Ni_{60}Nb_{40}$ by mechanical alloying", Appl. Phys. Lett. 43 (1983) 1017 https://doi.org/10.1063/1.94213
  3. U. Mizutani and C.H. Lee, "Effect of mechanical alloying beyond the completion of glass formation for Ni-Zr alloy powders", J. Mat. Sci. 25 (1990) 399 https://doi.org/10.1007/BF00714046
  4. C.H. Lee, "Formation of nanocrystalline $MoSi_2$ compound subjected to mechanical alloying", J. Ceramic Processing Research 9 (2008) 321
  5. J. Eckert and L. Schultz, "Glass formation and extended solubilities in mechanically alloyed cobalt-transition metal alloys", J. Less-Common Metals 166 (1990) 293 https://doi.org/10.1016/0022-5088(90)90011-8
  6. K. Suzuki, Y. Homma, K. Suzuki and M. Misawa, "Structural characterization of Ni-V amorphous alloys prepared by mechanical alloying", Mat. Sci. Eng. A134 (1991) 987 https://doi.org/10.1016/0921-5093(91)90907-5
  7. R.B. Schwarz and W.L. Johnson, "Formation of an amorphous alloy by solid state reaction of the pure polycrystalline metals", Phys. Rev. Letters 51 (1983) 415 https://doi.org/10.1103/PhysRevLett.51.415
  8. C.H. Lee, S.H. Lee, S.Y. Chun and S.J. Lee, "Fabrication of $Mg_2Si$ thermoelectric materials by mechanical alloying and spark-plasma sintering process", J. of Nanosci. Nanotechnol. 6 (2006) 3429 https://doi.org/10.1166/jnn.2006.027
  9. T. Fukunaga, N. Kuroda, C.H. Lee, T. Koyano and U. Mizutani, "Nitrogen induced amorphization observed by X-ray and neutron diffractions in the immiscible V-Cu system", J. Non-Cryst. Solids 176 (1994) 98 https://doi.org/10.1016/0022-3093(94)90217-8
  10. H.J. Fecht, E. Hellstern, Z. Fu and W.L. Johnson, "Nanocrystalline metals prepared by high-energy ball milling", Metal. Trans. 21 (1990) 2333 https://doi.org/10.1007/BF02646980
  11. G.H. Li and Q.P. Kong, "Processing and thermal stability of $nano-Mg_2Si$ intermetallic compound", Scripta Metallurgica et Materialia 32 (1995) 1435 https://doi.org/10.1016/0956-716X(95)00184-W
  12. T. Ban, K. Okada, T. Hayashi and N. Otsuka, "Mechanochemical effects for some $Al_2O_3$ powders of dry grinding", J. Mat. Sci. 27 (1992) 465 https://doi.org/10.1007/BF00543939
  13. J. Liao and M. Senna, "Formation and properties of amorphous magnesium silicates", Mat. Sci. Forum 88 (1992) 753 https://doi.org/10.4028/www.scientific.net/MSF.88-90.753
  14. K. Tokumitsu, "Mechanochemical reaction between metals and hydrocarbons", Mat. Sci. Forum 88 (1992) 715 https://doi.org/10.4028/www.scientific.net/MSF.88-90.715
  15. H. Izumi, K. Izumi and K. Kudaka, "Mechanochemical reduction reaction of titanium oxides by calcium", J. Jpn. Soc. Powder and Powder Metallurgy 48 (2001) 1051 https://doi.org/10.2497/jjspm.48.1051
  16. C.H. Lee, S.H. Lee, S.Y. Chun, S.J. Lee and Y.S. Kwon, "Nanocomposite formation in the $Fe_2O_3-M$ (M = Al, Ti, Zn, Cu) system by mechanical alloying", Mat. Sci. Forum 449 (2004) 253 https://doi.org/10.4028/www.scientific.net/MSF.449-452.253
  17. O. Kubaschewski and C.B. Alcock, Metallurgical Thermochemistry, Pergamon International Library (1983) 268
  18. W.H. Hall, "Characterization of crystal size and strain by X-ray diffraction", J. Inst. Met. 75 (1948) 1127
  19. C.H. Lee, S.H. Lee, S.Y. Chun, S.J. Lee and J.S. Kim, "Mechanical alloying effect of hematite and graphite", Mat. Sci. Forum 449 (2004) 257 https://doi.org/10.4028/www.scientific.net/MSF.449-452.257
  20. K. Schnitzke, L. Schultz, J. Wecker and M. Katter, "High coercivity in Sm2Fe17Nx magnets", Appl. Phys. Lett. 57 (1990) 2853 https://doi.org/10.1063/1.104202
  21. X.C. Kou, W.J. Qiang, H. Kronmuller and L. Shultz, "Coercivity of Sm-Fe-N ferromagnets produced by the mechanical alloying technique", J. Appl. Phys. 74 (1993) 6791 https://doi.org/10.1063/1.355079