Optimization of Antimicrobial Activity Against Food-borne Pathogens in Grapefruit Seed Extract and a Lactic Acid Mixture

식품위해미생물에 대한 자몽종자 추출물과 젖산 혼합물의 항균효과 최적화

  • 김해섭 (전라남도해양바이오연구원) ;
  • 박정욱 (전라남도해양바이오연구원) ;
  • 박인배 (전라남도해양바이오연구원) ;
  • 이영재 (전라남도해양바이오연구원) ;
  • 김정목 (목포대학교 식품공학과) ;
  • 조영철 (전라남도해양바이오연구원)
  • Published : 2009.08.30

Abstract

Response surface methodology (RSM) is frequently used for optimization studies. In the present work, RSM was used to determine the antimicrobial activitiesof grapefruit seed extract (GFSE) and a lactic acid mixture (LA) against Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhimurium, Pseudomonas fluorescens, and Vibrio parahaemolyticus. A central composite design was used to investigate the effects of independent variables on dependent parameters. One set of antimicrobial preparations included mixtures of 1% (w/w) GFSE and 10% (w/w) LA, in which the relative proportions of component antimicrobials varied between 0 and 100%. In further experiments, the relative proportions were between 20% and 100%. Antimicrobial effects against various microorganisms were mathematically encoded for analysis. The codes are given in parentheses after the bacterial names, and were S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$), and V. parahaemolyticus ($Y_6$). The optimum antimicrobial activity of the 1% (w/w) GFSE:10% (w/w) LA mixture against each microorganism was obtained by superimposing contour plots ofantimicrobial activities on measures of response obtained under various conditions. The optimum rangesfor maximum antimicrobial activity of a mixture with a ratio of 1:10 (by weight) GFSE and LA were 35.73:64.27 and 56.58:43.42 (v/v), and the optimum mixture ratio was 51.70-100%. Under the tested conditions (a ratio of 1% [w/w] GFSE to 10% [w/w] LA of 40:60, and a concentration of 1% [w/w] GFSE and 10% [w/w] LA, 70% of the highest value tested), and within optimum antimicrobial activity ranges, the antimicrobial activities of the 1% (w/w) GFSE:10% (w/w) LA mixture against S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$), and V. parahaemolyticus ($Y_6$) were 24.55, 25.22, 20.20, 22.49, 23.89, and 28.04 mm, respectively. The predicted values at optimum conditions were similar to experimental values.

반응표면분석법은 최적화 연구에 자주 사용되는 통계적 분석방법이다. 본 연구는 반응표면분석법에 의해 Staphylococcus aureus, Bacillus cereus, Escherichia coli, Salmonella typhimurium, Pseudomonas fluorescens 및 Vibrio parahaemolyticus에 대한 자몽종자 추출물과 젖산 혼합물의 항균활성을 검토하여 최적화하였다. 중심합성계획에 따라 1% 자몽종자 추출물 (GFSE)과 10% 젖산 (LA)의 비율 ($X_1$, 0:100-100:0 v/v)과 1% GFSE와 10% LA 혼합물의 농도 ($X_2$, 20-100%)를 독립변수로 하고 S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$) 및 V. parahaemolyticus ($Y_6$)에 대한 항균활성을 종속변수로 하여 항균활성을 측정하였다. 미생물에 대한 1% GFSE와 10% LA의 항균활성 처리조건의 최적범위는 다양한 조건하에서 얻어진 반응변수의 항균활성에 관하여 중첩된 등고선도로 예측하였고, 항균활성을 최대화하기위한 최적범위는 1% GFSE와 10% LA의 비율 35.73:64.27-56.58:43.42 (v/v)이었고 혼합물의 농도는 $51.70{\sim}100%$였다. 최적 항균활성 범위내의 주어진 조건 (1% GFSE:10% LA 비율 40:60, 1% GFSE:10% LA 혼합물 70%)에서 S. aureus ($Y_1$), B. cereus ($Y_2$), E. coli ($Y_3$), S. typhimurium ($Y_4$), P. fluorescens ($Y_5$) 및 V. parahaemolyticus ($Y_6$)에 대한 1% GFSE:10% LA 혼합물의 비율 및 농도의 항균활성은 각각 24.55, 25.22, 20.20, 22.49, 23.89 및 28.04 mm로 예측되었다. 최적조건 범위내의 임의의 조건에서 실험한 결과 각 종속변수들의 예측값과 실제값이 유사한 항균활성을 보였다.

Keywords

References

  1. Settanni, L. and Corsetti, A. (2008) Application of bacteriocins in vegetable food biopreservation. Int. J. Food Microbiol., 121, 123-138 https://doi.org/10.1016/j.ijfoodmicro.2007.09.001
  2. Sundheim, G. and Langsrud, S. (1995) Natural and acquired resistance of bacteria associated with food processing environments to disinfectant containing an extract from grapefruit seeds. Int. Biodeterioration & Biodegradation, 36, 441-448 https://doi.org/10.1016/0964-8305(95)00108-5
  3. Coombe, B.G. (1989) The grape berry as a sink. Acta Hortie., 239, 149-158
  4. Reagor, L., Gusman, J., McCoy, L., Carino, E. and Heggers, J.P. (2002) The effectiveness of treated grapefruit-seed extract as an antibacterial agent. I. An in vitro agar assay. J. Altern. Complem. Med., 8, 325-332 https://doi.org/10.1089/10755530260128014
  5. Lee, H.J., Kim, T.C., Kim, S.J. and Park, S.J. (2005) Bruising injury of persimmon (Diospyros kaki cv. Fuyu) fruits. Sci. Hortie., 103, 179-185
  6. Heggers, J.P., Cottingham, J., Gusman, J., Reagor, L., Mccoy, L., Carino, E., Cox, R. and Zhao, J.G. (2002) The effectiveness of processed grapefruit-seed extract as an antibacterial agent: II. Mechanism of action and in vitro toxicity. J. Altern. Complem. Med., 8, 333-340 https://doi.org/10.1089/10755530260128023
  7. Ionescu, G., Kiehl, R.,Wichmann-Kunz, F.,Williams, C., Baum, L., 1990. Oral citrus seed extract in Atopie Eczema: In vitro and in vivo studies on intestinal microflora. J. Orthomol. Med., 5, 155-158
  8. Tirillini, B. (2000) Grapefruit: the last decade acquisitions. Fitoterapia., 71, 29-37 https://doi.org/10.1016/S0367-326X(00)00176-3
  9. Saito, M., Hosoyama, H., Ariga, T., Kataoka, S. and Yamaji, N. (1998) Antiulcer activity of grape seed extract and procyanidins. J. Agric. Food Chem., 46, 1460-1464 https://doi.org/10.1021/jf9709156
  10. Shoko, T., Soiehi, T., Megumi, M.M., Eri, F., Jun, K. and Michiko, W. (1999) Isolation and identification of an antibacterial compound from grape and its application to food. Nippon Nogeikagaku Kaishi., 73, 125-128 https://doi.org/10.1271/nogeikagaku1924.73.125
  11. Xu, W., Qu, W., Huang, K., Guo, F., Yang, J., Zhao, H. and Luo, Y. (2007) Antibacterial effect of grapefruit seed extract on food-borne pathogens and its application in the preservation of minimally processed vegetables. Posthavest BioI. Technol., 45, 126-133 https://doi.org/10.1016/j.postharvbio.2006.11.019
  12. Chin, K.B., Kim, W.Y. and Kim, K.H. (2005) Physicochemical and textural properties antimicrobial effect of low-fat comminuted sausages manufactured with grapefruit seed extract. Korean J. Food Sci. Ani. Res., 25, 141-148
  13. Cho, K.H. and Park, S.G. (2005) Antibacterial effects on Bacillus stearthermophilus by adding natural grapefruit seed extracts in soymilk, J. Korean Ind. Eng. Chem., 16, 139-143
  14. Brul, S. and Coote, P. (1999) Preservative agents in foods modes of action and microbial resistance mechanisms. Int. J. Food Microbiol., 50, 1-17 https://doi.org/10.1016/S0168-1605(99)00072-0
  15. Myers, R.H., and Montgomery, D.C. (1995) Response surface methodology: Process and product optimization using designed experiments. New York: John Wiley & Sons, Inc.
  16. Varga-Lopez, 1.M., Paredes-Lopez, O. and RamirezWong, B. (1991) Pysicochemical properties of extrusioncooked amaranth under alkaline conditions. Cereal Chem., 68, 610-614
  17. Bhattacharya, S. and Prakash, M. (1994) Extrusion of blends and chickpea flours: a response surface analysis. J. Food Eng., 21, 315-330 https://doi.org/10.1016/0260-8774(94)90076-0
  18. Anjum, M.F., Tasadduq, I. and Al-Sultan, K (1997) Response surface methodology: A neural network approach. European J. Operational Res., 101, 65-73
  19. Kang, B.S., Kim, B.Y and Hahm, Y.T. (2001) Optimization of the extrusion processing conditions for Jobs-tear. Food Sci. Biotechnol., 10, 123-127
  20. Davidson, P.M. and Parish, M.E. (1989) Methods for testing the efficacy of food antimicrobials. J. Food Technol., 43, 148-155
  21. Lee, M.K, Park, B.K., Jeong, C.K. and 011, D.H. (2001) Antimicrobial activity of glycerol monolaurate and organic acids on the survival of Escherichia coli 0157:H7. J. Food Sci. Nutr., 6, 6-9
  22. Park, H.K. and Kim, S.B. (2006) Antimicrobial activity of grapefruit seed extract. Korean J. Food Nutr., 19, 526-531
  23. Lim, G.O., Hong, YH. and Song, KB. (2008) Incorporating grapefruit seed extract into Gelidium corneum-whey protein isolate blend packaging film increases the shelf life of fish paste. J. Food Sci. Nutr., 13, 370-374 https://doi.org/10.3746/jfn.2008.13.4.370
  24. Kim, Y.M. and Kim, K.H. (2002) Effects of vinegar and lactic acid on the survival of pathogens causing food poisoning of sliced raw fish meat. Korean J. Life Sci., 12, 669-675 https://doi.org/10.5352/JLS.2002.12.6.669