DOI QR코드

DOI QR Code

Desalination Effects of Capacitive Deionization Process Using Activated Carbon Composite Electrodes

활성 탄소 복합 전극을 이용한 Capacitive Deionization 공정의 제염 효과

  • Lee, Jeong-Won (Dept. of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Hong-Il (Dept. of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Kim, Han-Joo (Dept. of Industrial Engineering Chemistry, Chungbuk National University) ;
  • Shin, Hyun-Soo (R&D Center, Techwin Co., Ltd.) ;
  • Kim, Jeong-Sik (R&D Center, Techwin Co., Ltd.) ;
  • Jeong, Boong-Ik (R&D Center, Techwin Co., Ltd.) ;
  • Park, Soo-Gil (Dept. of Industrial Engineering Chemistry, Chungbuk National University)
  • Published : 2009.08.28

Abstract

Desalination effects of Capacitive deionization(CDI) process using activated carbon $TiO_2$ composite electrode. In this study, we made the activated carbon electrod and activated carbon $TiO_2$ composite electrode, which analysed at cyclic voltammetry and charge-discharge. The results measured for discharge capacitance in cyclic voltammetry were 125 F/g in activated carbon electrode and capacitance of activatd carbon composite electrode was increased about two time, 243 F/g. The $TiO_2$ content of activated carbon composite electrode was 10 wt.%. When it was added wtih TiO2, electric double layer adsorption content was increased, so it was increased 25% in ion removal ratio of activated carbon electrode.

$TiO_2$가 첨가된 탄소복합전극을 제조 Capacitive deionization(CDI)에서의 제염효과에 대하여 고찰하였다. 본 연구에서는 탄소전극과 탄소복합전극을 제조하여 순환전류전압법과 충전-방전 평가를 하였으며 이때의 이온제거율에 대하여 고찰하였다. 순환전류전압법으로 1 mV/s의 전위주사속도에서 측정한 결과 탄소전극은 125 F/g, 탄소복합전극의 축전용량은 243 F/g으로 2배 증가됨을 확인하였다. 탄소복합전극의 $TiO_2$의 함량은 10 wt.%로 고정하였으며 $TiO_2$가 첨가됨에 따라 전기이중층 흡착량이 증가되어 이온제거율이 탄소전극보다 25% 증가되었다.

Keywords

References

  1. J. A. Trainham and J. Newman, 'A Flow-Through Porous Electrode Model: application to Metal-Ion Removal from Dilute Streams', J. Electrochem. Soc., 124, 1528 (1977) https://doi.org/10.1149/1.2133106
  2. W. J. Blaedel and J. C. Wang, 'Flow electrolysis on a reticulated vitreous carbon electrode', Anal. Chem., 51, 799 (1979) https://doi.org/10.1021/ac50043a006
  3. M. Matlosz and J. Newman, 'Experimental investigation of a porous carbon electrode for the removal of mercury from contaminated brine', J. Electrochem. Soc., 133, 1850 (1986) https://doi.org/10.1149/1.2109035
  4. J. C. Farmer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, 'Capacitive Deionization of NaCl and $NaNO_{3}$ Aqueous Solutions with Carbon Aerogel Electrodes', J. Electrochem. Soc., 143, 159 (1996) https://doi.org/10.1149/1.1836402
  5. A. Porteous, Desalination Technology, Applied Science Publishers, London (1983)
  6. K. S. Spiegler and Y. M. El-Sayed, 'The energetics of desalination processes', Desalination, 134, 109 (2001) https://doi.org/10.1016/S0011-9164(01)00121-7
  7. R. V. Perez, M. L. Rodriguez, and J. Mengual, 'Characterizing an eletrodialysis reversal pilot plant', Desalination, 137, 199 (2001) https://doi.org/10.1016/S0011-9164(01)00219-3
  8. T. Hori, M. Hashino, A. Omori, T. Matsuda, K. Takasa, K. Watanabe, and J. Membr, 'Synthesis of Novel Microfilters with Ion-Exchange Capacity and Its Application to Ultrapure Water Production Systems', Sci. 132, 203 (1997) https://doi.org/10.1016/S0376-7388(97)00076-8
  9. K. L. Yang, T. Y. Ying, S. Yiacoumi, C. Tsouris, and E. S. Vittoratos, 'Electrosorption of Ions from Aqueous Solutions by Carbon Aerogel : An Electrical Double-Layer Model', Langmuir, 17, 1961 (2001) https://doi.org/10.1021/la001527s
  10. J. Wang, L. Angnes, H. Tobias, R. A. Roesner, K. C. Hong, R. S. Glass, F. M. Kong, and R. W. Pekala, 'Carbon aerogel composite electrodes', Anal. Chem., 65, 2300 (1993) https://doi.org/10.1021/ac00065a022
  11. R. W. Pekala, J. C. Farmer, C. T. Alviso, T. D. Tran, S. T. Mayer, J. M. Miller, and B. Dunn, 'Carbon aerogels for electrochemical applications', J. Non-Cryst. Solids, 255, 74 (1998) https://doi.org/10.1016/S0022-3093(98)00011-8
  12. J. C. Famer, D. V. Fix, G. V. Mark, R. W. Pekala, and J. F. Poco, J. Appl. Electrochem., 26, 1007 (1996)
  13. S. Shiraishi, H. Kurihara, H. Tsubota, A. Oya, Y. Soned, and Y. Yamada, 'Electric Double Layer Capacitance of Highly Porous Carbon Derived from Lithium Metal and Polytetrafluoroethylene', Electrochemical and Solid-State Letter, 4, A5 (2001) https://doi.org/10.1149/1.1344276
  14. H. Shi, 'Conductivities and ion association of quaternary ammonium tetrafluoroborates in propylene carbonate', Electrochimica Acta, 39, 2083 (1994) https://doi.org/10.1016/0013-4686(94)85092-5
  15. M. Mullier and B. Kastening, 'The double layer of activated carbon electrodes : Part 1. The contribution of ions in the pores', J. Electroanal. Chem., 374, 149 (1994) https://doi.org/10.1016/0022-0728(94)03372-2
  16. M. W. Ryoo and G. Seo, 'Improvement in Capacitive Deionization Function of Activated Carbon Cloth bu Titania Modification', Water Research, 37, 1527 (2003) https://doi.org/10.1016/S0043-1354(02)00531-6
  17. Y. J. Hwang, S. K. Jeong, J. S. Shin, K. S. Nahm, and A. M. Stephan, 'High capacity disordered carbons obtained from coconut shells as anode materials for lithium batteries', Journal of Alloys and Compounds, 448, 141 (2008) https://doi.org/10.1016/j.jallcom.2006.10.036
  18. X. H. Xia, Z. J. Jia, Y. Yu, Y. Liang, Z. Wang, and L. L. Ma, 'Preparation of multi-walled carbon nanotube supported $TiO_{2}$ and its photocatalytic activity in the reduction of $CO_{2}$ with $H_{2}O$', Carbon, 45, 717 (2007) https://doi.org/10.1016/j.carbon.2006.11.028
  19. I. Tanahashi, A. Yoshida, and A. Nishino, 'Electrochemical Characterization of Activated Carbon-Fiber Cloth Polarizable Electrodes for Electric Double-Layer Capacitors', J. Electrochem. Soc., 137, 3052 (1990) https://doi.org/10.1149/1.2086158
  20. A. J. Bard and L. R. Faulkner, 'Electrochemical methods', John Wiley & Sons (1980)
  21. C. H. Hou, C. Liang, S. Yiacoumi, S. Dai, and C. Tsouris, 'Electrosorption capacitance of nanostructured carbon based materials', J. of Colloid and Interface Science, 302, 54 (2006) https://doi.org/10.1016/j.jcis.2006.06.009
  22. K. L. Yang, S. Yiacoumi, and C. Tsouris, 'Electrosorption capacitance of nanostructured carbon aerogel obtained by cyclic voltammetry', J. of Electroanalytical Chemistry, 540, 159 (2003) https://doi.org/10.1016/S0022-0728(02)01308-6
  23. H. J. Oh, J. H. Lee, H. Ahn, Y. S. Jeong, Y. J. Kim, and C. S. Chi, 'Nanoporous activated carbon cloth for capacitive deionization of aqueous solution', Thin Solid Films, 515, 220 (2006) https://doi.org/10.1016/j.tsf.2005.12.146
  24. C. T. Hsieh and H. Teng, 'Influence of oxygen treatment on electric double-layer capacitance of activated carbon fabrics', Carbon, 40, 667 (2002) https://doi.org/10.1016/S0008-6223(01)00182-8

Cited by

  1. Application of Capacitive Deionization Packed Ion Exchange Resins in Two Flow Channels vol.18, pp.1, 2015, https://doi.org/10.5229/JKES.2015.18.1.24
  2. Application of Capacitive Deionization for Desalination of Mining Water vol.17, pp.1, 2014, https://doi.org/10.5229/JKES.2014.17.1.37
  3. Comparison of CDI and MCDI applied with sulfonated and aminated polysulfone polymers vol.7, pp.1, 2016, https://doi.org/10.12989/mwt.2016.7.1.039
  4. Mesoporous Carbon Electrodes for Capacitive Deionization vol.17, pp.1, 2014, https://doi.org/10.5229/JKES.2013.17.1.57