DOI QR코드

DOI QR Code

Electronic Structure and Magnetism of Fe Monolayer on Ir(001)

Ir(001) 위의 철 단층의 자성에 대한 전자구조 연구

  • Kim, Dong-Chul (Department of Electrical and Electronic Engineering, Halla University) ;
  • Lee, Jae-Il (Department of Physics, Inha University)
  • Published : 2009.10.31

Abstract

The magnetism of the Fe monolayer on Ir(001) substrate [Fe/Ir(001)] was investigated by the first-principles energy band method. For comparison, the Fe and Ir ordered-alloyed monolayer on Ir(001) [Fe$_{0.5}$Ir$_{0.5}$/Ir(001)] was also considered. The calculated magnetic moments for Fe atoms in Fe/Ir(001) system and Fe$_{0.5}$Ir$_{0.5}$/Ir(001) system are 2.95 and 2.83 bohr magnetons, respectively. The detailed aspects of the magnetism and electronic structures for these systems are discussed with the calculated denisty of states and spin densities. The optimized atomic sites for the overlayer Fe and Ir atoms were determined by the total energy and atomic force calculations. The Fe atoms in Fe/Ir(001) move closer to the substrate Ir layer than the Fe atoms in Fe$_{0.5}$Ir$_{0.5}$/Ir(001) do to the Ir substrate.

Ir(001) 표면 위에 얹혀진 철 단층의 자성을 제일원리 전자구조 계산방법을 이용하여 이론적으로 탐구하였다. 비교를 위하여 Fe와 Ir이 규칙적으로 반반 섞인 위층에 대하여도 계산하였다. 모두 Fe로 이루어진 단층의 경우 철원자의 자기모멘트는 2.95 보어마그네톤으로 비교적 큰 값을 가졌으며, Fe와 Ir이 반반 섞인 위층에서 Fe의 자기모멘트는 2.83 보어마그네톤이었다. 이러한 자성과 전자구조의 자세한 면은 계산된 상태밀도와 스핀밀도를 통하여 논의한다. 각 위층 원자의 평형위치를 구하기 위해 총에너지와 원자힘 계산을 하였다. 그 결과 Fe 위층에서의 Fe 원자위치가 Fe와 Ir이 반반 섞인 위층의 Fe 위치보다 Ir 기판에 다소 가까웠다.

Keywords

References

  1. A. J. Freeman and R. Wu, J. Magn. Magn. Mater., 100, 497 (1991). https://doi.org/10.1016/0304-8853(91)90837-Z
  2. T. Asada, G. Bihlmayer, S. Handschuh, S. Heinze, P. Kurz, and S. Bluegel, J. Phys.: Condens. Matter, 11, 9347 (1999). https://doi.org/10.1088/0953-8984/11/48/302
  3. Z. Q. Qiu and S. D. Bader, Surf. Sci., 438, 319 (1999). https://doi.org/10.1016/S0039-6028(99)00597-X
  4. C. Li and A. J. Freeman, Phys. Rev. B, 43, 78 (1991).
  5. R. Wu and and A. J. Freeman, Phys. Rev. B, 51, 3408 (1995).
  6. Y. Y. Huang, C. Liu, and G. P. Felcher, Phys. Rev. B, 47, 183 (1993). https://doi.org/10.1103/PhysRevB.47.183
  7. R. Wu and A. J. Freeman, J. Magn. Magn. Mater., 137, 127 (1994). https://doi.org/10.1016/0304-8853(94)90197-X
  8. C. Li, A. J. Freeman, and C. L. Fu, J. Magn. Magn. Mater., 75, 201 (1988). https://doi.org/10.1016/0304-8853(88)90021-2
  9. S. Bluegel, Phys. Rev. Lett., 68, 851 (1992). https://doi.org/10.1103/PhysRevLett.68.851
  10. S. Bluegel and P. H. Dederichs, Europhys. Lett., 9, 597 (1989). https://doi.org/10.1209/0295-5075/9/6/018
  11. S. Bluegel, B. Drittler, R. Zeller, and P. H. Dederichs, Appl. Phys. A., 49, 547 (1989). https://doi.org/10.1007/BF00616980
  12. R. Wu and A. J. Freeman, J. Appl. Phys., 79, 6500 (1996). https://doi.org/10.1063/1.361982
  13. Z. Yang and R. Wu, Phys. Rev. B, 63, 064413 (2001). https://doi.org/10.1103/PhysRevB.63.064413
  14. V. dos Santos and C. A. Kuhnen, Thin Solid Films, 350, 258 (1999). https://doi.org/10.1016/S0040-6090(98)01736-2
  15. A. B. Klautau, P. R. Peduto, and S. Frota-Pessoa, J. Magn. Magn. Mater., 186, 223 (1998). https://doi.org/10.1016/S0304-8853(98)00051-1
  16. B. A. Hamad and J. M. Khalifeh, Surf. Sci., 481, 33 (2001). https://doi.org/10.1016/S0039-6028(01)01044-5
  17. S. Bluegel, M. Weinert, and P. H. Dederichs, Phys. Rev. Lett., 60, 1077 (1988). https://doi.org/10.1103/PhysRevLett.60.1077
  18. S. Bluegel, Europhys. Lett., 9, 597 (1989). https://doi.org/10.1209/0295-5075/9/6/018
  19. G. A. Mulhollan, R. L. Fink, J. L. Erskine, and G. K. Walters, Phys. Rev. B, 43, 645 (1991). https://doi.org/10.1103/PhysRevB.43.13645
  20. J. Chen and J. L. Erskine, Phys. Rev. Lett., 68, 1212 (1992). https://doi.org/10.1103/PhysRevLett.68.1212
  21. R.Wu and A. J. Freeman, Phys. Rev. B, 45, R7532 (1992). https://doi.org/10.1103/PhysRevB.45.7532
  22. R. Kubetzka, P. Ferriani, M. Bode, S. Heinze, G. Bihlmayer, K. von Bergmann, O. Pietzsch, S. Bluegel, and R. Wiesendanger, Phys. Rev. Lett., 94, 087204 (2005). https://doi.org/10.1103/PhysRevLett.94.087204
  23. P. Ferriani, S. Heinze, G. Bihlmayer, and S. Bluegel, Phys. Rev. B., 72, 024452 (2005). https://doi.org/10.1103/PhysRevB.72.024452
  24. B. A. Hamad, J. M. Khalifeh, and C. Demangeat, Surf. Sci., 601, 346 (2007). https://doi.org/10.1016/j.susc.2006.09.039
  25. E. Wimmer, H. Krakauer, M. Weinert, and A. J. Freeman, Phys. Rev. B, 24, 864 (1981), and references therein https://doi.org/10.1103/PhysRevB.24.864
  26. M. Weinert, E. Wimmer, and A. J. Freeman, Phys. Rev. B, 26, 4571 (1982). https://doi.org/10.1103/PhysRevB.26.4571
  27. W. Mannstadt and A. J. Freeman, Phys. Rev. B, 55, 13298 (1997). https://doi.org/10.1103/PhysRevB.55.13298
  28. J. I. Lee, W. Mannstadt, and A. J. Freeman, Phys. Rev. B, 59, 1673 (1999). https://doi.org/10.1103/PhysRevB.59.1673
  29. P. Hohenberg and W. Kohn, Phys. Rev., 136, B864 (1964) https://doi.org/10.1103/PhysRev.136.B864
  30. W. Kohn and L. J. Sham, Phys. Rev., 140, A1133 (1965). https://doi.org/10.1103/PhysRev.140.A1133
  31. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett., 77, 3865 (1996). https://doi.org/10.1103/PhysRevLett.77.3865
  32. D. D. Koelling and B. N. Harmon, J. Phys. C, 10, 3107 (1997). https://doi.org/10.1088/0022-3719/10/16/019