DOI QR코드

DOI QR Code

Improvement of Electrochemical Characteristics by Changing Morphologies of Carbon Electrode

탄소 전극 형상 변화에 따른 전기화학 커패시터 특성 향상

  • Min, Hyung-Seob (Department of Electrical Engineering and Institute of Nano and Sciencec, Korea University) ;
  • Kim, Sang-Sig (Department of Electrical Engineering and Institute of Nano and Sciencec, Korea University) ;
  • Cheong, Deock-Soo (Department of New Materials Science and Engineering, Dankook University) ;
  • Choi, Won-Kook (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Oh, Young-Jei (Thin Film Materials Research Center, Korea Institute of Science and Technology) ;
  • Lee, Jeon-Kook (Thin Film Materials Research Center, Korea Institute of Science and Technology)
  • 민형섭 (고려대학교 전자전기공학과) ;
  • 김상식 (고려대학교 전자전기공학과) ;
  • 정덕수 (단국대학교 신소재공학) ;
  • 최원국 (한국과학기술연구원 박막재료연구센터) ;
  • 오영제 (한국과학기술연구원 박막재료연구센터) ;
  • 이전국 (한국과학기술연구원 박막재료연구센터)
  • Published : 2009.10.27

Abstract

Activated carbon (AC) with very large surface area has high capacitance per weight. However, such activation methods tend to suffer from low yields, below 50%, and are low in electrode density and capacitance per volume. Carbon NanoFibers (CNFs) had high surface area polarizability, high electrical conductivity and chemical stability, as well as extremely high mechanical strength and modulus, which make them an important material for electrochemical capacitors. The electrochemical properties of immobilized CNF electrodes were studied for use as in electrical double layer capacitor (EDLC) applications. Immobilized CNFs on Ni foam grown by thermal chemical vapor deposition (CVD) were successfully fabricated. CNFs had a uniform diameter range from 50 to 60 nm. Surface area was 56 m$^2$/g. CNF electrodes were compared with AC and multi wall carbon nanotube (MWNT) electrodes. The electrochemical performance of the various electrodes was examined with aqueous electrolyte of 2M KOH. Equivalent series resistance (ESR) of the CNF electrodes was lower than that of AC and MWNT electrodes. The specific capacitance of 47.5 F/g of the CNF electrodes was achieved with discharge current density of 1 mA/cm$^2$.

Keywords

References

  1. R. F. Service, Science, 313(5789), 902 (2006). https://doi.org/10.1126/science.313.5789.902
  2. E. Frackowiak, Phys. Chem. Chem. Phys., 9, 1774 (2007). https://doi.org/10.1039/b618139m
  3. B. J. Lee, Y. I. Yoon and J. M. Ko, Kor. Chem. Eng. Res., 46, 94 (2008).
  4. J. Gamby, P. L. Taberna, P. Simon, J. F. Fauvarque and M. Chesneau, J. Power Source, 101, 109 (2001). https://doi.org/10.1016/S0378-7753(01)00707-8
  5. M. Wu, G. A. Snook, G. Z. Chen and D. J. Fray, Electrochem. Commun., 6, 499 (2004). https://doi.org/10.1016/j.elecom.2004.03.011
  6. Ch. Niu, E. K. Sichel, R. Hoch, D. Moy and H. Tennent, Appl. Phys. Lett., 70, 1480 (1997). https://doi.org/10.1063/1.118568
  7. Q. -L. Chen, K. Xue, W. Shen, F. Tao, S. Yin and W. Xu, Electroch. Acta, 49, 4157 (2004). https://doi.org/10.1016/j.electacta.2004.04.010
  8. C. Choi, M. -H. Jung and J. -M Oh, Kor. J. Mater. Res., 19(3), 156 (2009). https://doi.org/10.3740/MRSK.2009.19.3.156
  9. J. S. Jang, J. W Bae, M. J. Choi and S. H. Yoon, Carbon, 43, 2730 (2005). https://doi.org/10.1016/j.carbon.2005.05.039
  10. F. Pico, J. Ibanez, M. A. Lillo-Rodenas, A. Linares-Solano, R. M. Rojas, J. M. Amarilla and J. M. Rojo, J. Power Source, 176, 417 (2005). https://doi.org/10.1016/j.jpowsour.2007.11.001
  11. W. -W. Lee, C. -H. Shin, H. -S. Park, Y. Choi and B. -H. Ryu, Kor. J. Mater. Res., 18(10), 564 (2008). https://doi.org/10.3740/MRSK.2008.18.10.564
  12. S. J. Kim, S. W. Hwang and S. H. Hyun, J. of Mater. Sci., 40, 725 (2005). https://doi.org/10.1007/s10853-005-6313-x
  13. N. A. Jarrah, J. G. van Ommen and L. Lefferts, J. Catalysis 239, 460 (2006). https://doi.org/10.1016/j.jcat.2006.02.021
  14. D. -S. Kim, Kor. Chem. Eng. Res., 46(1), 50 (2008).
  15. Y. I. Yoon and J. M. Ko, Kor. Chem. Eng. Res., 46(5), 898 (2008).
  16. I. -J. Kim, S. -Y. Lee and S. -I. Moon, J. of KIEEME (in Korean), 18, 833 (2005). https://doi.org/10.4313/JKEM.2005.18.9.833

Cited by

  1. Composite vol.22, pp.3, 2012, https://doi.org/10.3740/MRSK.2012.22.3.118