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ON HYPERBOLIC 3-MANIFOLDS WITH SYMMETRIC
HEEGAARD SPLITTINGS

Soo Hwan Kim and Yangkok Kim

Abstract. We construct a family of hyperbolic 3-manifolds by pairwise
identifications of faces in the boundary of certain polyhedral 3-balls and
prove that all these manifolds are cyclic branched coverings of the 3-
sphere over certain family of links with two components. These extend
some results from [5] and [10] concerning with the branched coverings of
the whitehead link.

1. Introduction

There are two well known results about the realization of closed 3-manifolds.
One is that any closed orientable 3-manifold can be obtained by Dehn surgeries
on the components of an oriented link in the 3-sphere. The other one says that
any closed 3-manifold can be represented as a branched covering of some link
in the 3-sphere. So if we consider a link in the 3-sphere, we can construct many
classes of closed orientable 3-manifolds by considering its branched coverings
or Dehn surgeries along it. The description of closed 3-manifolds as polyhedral
3-balls, whose finitely many boundary faces are glued together in pairs, is a
further standard way to construct 3-manifolds (see [3], [4], [10], [11], and [12]).
If the polyhedral 3-ball admits a geometric structure and the face identifica-
tion is performed by means of geometric isometries, then the same geometric
structure is inherited by the quotient manifold (see [10], [12], and [15]). Many
authors have studied the connections between the face identification procedure
and the representation of closed 3-manifolds as branched coverings of the 3-
sphere. In [10] Helling, Kim and Mennicke considered a family of polyhedral
3-balls Pn depending on a positive integer n, and for any coprime positive in-
tegers n and k, they defined a pairwise gluing of faces in the boundary of Pn

yielding a closed orientable 3-manifold Mn,k. In the sequel, they proved that
Mn,k is an n-fold strongly cyclic covering of the 3-sphere branched over the
Whitehead link and classified, up to isometry, those coverings. More general
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cases (that is the branched coverings of the Whitehead link which are not nec-
essarily strongly cyclic) were handled by A. Cavicchioli and L. Paoluzzi [5],
when gcd(n, k) = d > 1.

In this paper we consider the following classes of links Wm and L(m,d) for
positive integers m and d as shown in Figure 1, where the index m − 1 in
Figure 1a denotes the number of half twists and each Li in box denotes the
( 1

m )-rational tangle. We note that Wm is a link of two components which is the
rational ( 4m

2m−1
)-tangle. Moreover Wm and L(m,d) extend the Whitehead link

W2 and L(2,1). We construct an infinite family of 3-manifolds M(2m + 1, n, k)
by the identification of oppositely oriented boundary faces of a polyhedral 3-
cell P(2m + 1, n) for positive integers m,n, k. Then we shall deal with the
combinatorial representation of M(2m + 1, n, k) by a special class of edge-
colored graphs, called crystallizations (see for example [2], [8], [6], and [14]).

1
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dLL

L

L

a. The link Wm b. L(m,d)

Figure 1

By applying LCG moves on crystallizations ([13] and [16]), we prove that
M(2m + 1, 2d, d) is a 2-fold strongly cyclic covering of the 3-sphere branched
over L(m,d). In the sense of Birman and Hilden [1], we obtain the result that
the symmetric extension of a Heegaard splitting for M(2m+1, 2d, d) represents
M(2m+1, n, k) as (n/d)-fold strongly cyclic coverings of the 3-sphere branched
over L(m,d), where gcd(n, k) = d. Moreover M(2m + 1, n, k) is an n-fold cyclic
covering of the 3-sphere branched over Wm, where the branched indices of its
components are n and n/d, respectively. We note that L(m,d) is hyperbolic
for m > 1 and so does M(2m + 1, n, k) for m > 1. The results extend the
corresponding ones of Helling-Kim-Mennicke [10] and Cavicchioli-Paoluzzi [5],
where m = 2 and gcd(n, k) = 1, and m = 2, gcd(n, k) = d > 2, respectively.

2. Construction of the manifold M(2m + 1, n, k)

In this section we construct an infinite family of 3-manifold M(2m+1, n, k)
by considering a combinatorial polyhedron together with an identification of
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Figure 2. P(2m + 1, n)

pairs of faces on its boundary. For positive integers m,n and k, let P(2m +
1, n) be a polyhedron whose boundary, which can be regarded as the 2-sphere,
consists of two n-gons in the northern and southern hemispheres, and 2n (2m+
1)-gons in the equatorial zone as shown in Figure 2. Then P(2m + 1, n) has
2n + 2 faces, 2nm + 2n edges and 2nm vertices.

We define the boundary cycles of two n-gons and 2n (2m+1)-gons as follow:

K : A1
1A

1
2 · · ·A1

n

K : Bm
1 Bm

2 · · ·Bm
n

Fj : Am
j Am−1

j · · ·A1
jA

1
j−1A

2
j−1 · · ·Am

j−1B
1
j−1

F j : Am
j B1

j B2
j · · ·Bm

j Bm
j−1B

m−1
j−1 · · ·B2

j−1B
1
j−1

for j = 1, . . . , n (see Figure 2).
We now define the face identification of 2n (2m+1)-gons as follows: for each

j = 1, . . . , n,

Tj :

Fj → F j+k



Am
j → Am

j+k,

Al
j → Bm−l

j+k for 1 ≤ l ≤ m− 1,

A1
j−1 → Bm

j+k,

Al
j−1 → Bm−l+2

j+k−1 for 2 ≤ l ≤ m,

B1
j−1 → B1

j+k−1,

where the indices are taken mod n.
Consider the oriented edges:

xj = (A1
j , A

1
j+1) and uj = (B1

j−1, A
m
j ).
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Figure 3. The quotient space P(2m + 1, n)/ ∼

Then the identifications Tj naturally induce the face identification of two n-
gons. Moreover each oriented edge uj has n

d equivalent edges for j = 1, 2, . . . , n.
Now we calculate the Euler characteristic of the cellular complex K(2m+1, n, k)
induced by the face identifications of the polyhedron P(2m + 1, n). We note
that there is a rotational symmetry ∼ by

Ai
j → Ai

j−1 and Bi
j → Bi

j−1 for all i = 1, 2, . . . , m and j = 1, 2, . . . , n

of P(2m + 1, n). Thus it suffices to consider our case in the quotient space
P(2m + 1, n)/ ∼ with gcd(n, k) = 1 described in Figure 3, where N and S are
the centers of two n-gons in P(2m + 1, n).

Indeed, it is easy to see that all edges of two (2m+1)-gons except (B1
1 , Am

2 )
are equivalent under the repeated applications of composition actions of Q,R
and T ;

Q :





A1
2 → Bm

2

A1
1 → Bm

1

N → S
and R :





N → N
S → S
Ai

2 → Ai
1

Bi
2 → Bi

1

for all i = 1, 2, . . . , m, and

T :





A1
1 → Bm

2

Al
1 → Bm−l+2

1 for 2 ≤ l ≤ m
B1

1 → B1
1

Am
2 → Am

2

Al
2 → Bm−l

2 for 1 ≤ l ≤ m− 1.
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This means that the complex K(2m + 1, n, k) has d vertices, n + d edges, n + 1
two-cells and 1 three-cell. So it follows that the resulting complex M(2m +
1, n, k) is a closed oriented 3-manifold by the theorem of Seifert and Threlfall: a
complex formed by identifying the faces of a polyhedron will be a closed manifold
if and only if its Euler characteristic equals zero.

3. Crystallizations and LCG moves

We introduce crystallizations and LCG moves (for detail, see [13] and [16]).
For a given multigraph Γ, V (Γ) and E(Γ) denote the sets of vertices and edges
of Γ (both finite) respectively. An edge-coloration on a graph Γ = (V (Γ), E(Γ))
is a map γ : E(Γ) → ∆ = {0, 1, 2, 3} such that γ(e) 6= γ(f) for any two adjacent
edges e, f. A pair (Γ, γ) is called a 4-colored graph if Γ is regular of valency 4.
For a subset ∆′ of ∆, we set Γ∆′ = (V (Γ), γ−1(∆′)). Each connected component
of Γ∆′ is called a ∆′-residue of degree k, where k is the order of the component.
The number of {ij}-residues of (Γ, γ) is denoted by gij(Γ, γ). A 4-colored graph
(Γ, γ) is said to be contracted if Γ∆\{i} is connected for each i ∈ ∆. If (Γ, γ) is a
4-colored graph, then the associated pseudocomplex K(Γ) is defined as follows:

(1) take a 3-simplex σ3(v) for each v ∈ V (Γ) and label its vertices by
different elements of ∆;

(2) if v, w ∈ V (Γ) are joined by an i-colored edge, then identify the 2-faces
of σ3(v) and σ3(w) opposite to the vertices labelled by i, so that equally
labelled vertices are identified together.

In this case (Γ, γ) is said to represent K(Γ) and every space homeomorphic
to it. A contracted 4-colored graph representing a closed connected 3-manifold
M is said to be a crystallization of M .

For the drawing of a crystallization we first fix two arbitrary colors, for
example, 0 and 1. Then we draw all {01}-residues as circles, and draw all the
third colored edges, say 2-colored edges, by connecting {01}-residues. Finally
we express each 3-colored edge by denoting the initial and terminal vertices
by a, a∗ or simply a, a if there is no confusion. This expression is called a
crystallization based on (01; 2). In (Γ, γ) an {ij}-residue {a, b, c, d} of degree
4 is called standard if four vertices a, b, c and d in Γ have the following two
properties:

(1) a, b, c and d are vertices of a {ij}-residue of degree 4;
(2) a, b, c and d are vertices of mutually distinct ∆\{ij}-residues.

In particular, when {a, b, c, d} = {a, a∗, b, b∗}, we simply write a standard
{ij}-residue {a, b} or a standard 2-residue {a, b} for a standard {ij}-residue
{a, a∗, b, b∗} of degree 4. We note that every closed connected 3-manifold admits
a crystallization, and that a manifold can have non-isomorphic crystallizations.
However there is a set of moves, called moves I, II, and A, which connects any
two crystallizations of a manifold (see [7]). We now introduce a LCG move
which is equivalent to moves I, II, and A.
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Figure 4. An extended 1-dipole

Let m1 and m2 be two distinct {01}-residues in Γ with ∆ = {0, 1, 2, 3}. We
say that m1 and m2 are joined by consecutive 3-colored edges e1, e2, . . . , ek

if there exists a partial ordering of vertices P0, P1, . . . , Pk−1, Pk, P of m1 and
Q0, Q1, . . . , Qk−1, Qk, Q of m2 such that

(1) Pi is joined to Qi by a 3-colored edge ei for 1 ≤ i ≤ k;
(2) P0P1 and Q0Q1 belong to a {03} or {13}-residue of degree greater than

4;
(3) PkP and QkQ belong to a {03} or {13}-residue of degree greater than

4.

Let m1 and m2 be two distinct {01}-residues in Γ which are joined by con-
secutive 3-colored edges e1, e2, . . . , ek. Then a partial subgraph of Γ formed by
vertices P1, . . . , Pk of m1 and Q1, . . . , Qk of m2, joined by consecutive 3-colored
edges is said to be an extended 1-dipole if m1 and m2 belong to different {012}-
residues (see Figure 4). In this case, we simply say that Γ has an extended
1-dipole generated by (P1, . . . , Pk;Q1, . . . , Qk). We recall that a subgraph of Γ
formed by two vertices X, Y joined by 2 edges with colors i, j will be called a
dipole {X,Y } of type 2 if and only if X and Y belong to distinct components
of Γ∆\{i,j}.

Let Γ have an extended 1-dipole consisting of two {01}-residues m1, m2 and
consecutive 3-edges e1, e2, . . . , ek. Then we construct a 4-colored graph Γ′ from
Γ as follows:

(1) Remove all 0, 1 and 3-colored edges ending at Pi or Qi, and all Pi or
Qi for 1 ≤ i ≤ k from Γ.

(2) Connect 2-colored edges ending at Qi and Pi for 1 ≤ i ≤ k.
(3) Connect 0 or 1-colored edges ending at Q and P, and Q0 and P0

In this case we say that Γ′ is obtained from Γ by eliminating an extended
1-dipole or Γ is obtained from Γ′ by adding an extended 1-dipole.

We say that Γ′ is obtained from Γ by a linear cut-and-glue move (or a LCG-
move) if there exists a non-contracted 4-colored graph Γ such that Γ is obtained
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from Γ by adding an extended 1-dipole and Γ′ is obtained from Γ by eliminating
an extended 1-dipole. Two crystallizations are said to be LCG-equivalent if
they can be joined by a finite sequence of LCG moves.

Theorem 1 ([7] and [13]). Let M and M ′ be closed 3-manifolds, and (Γ, γ) and
(Γ′, γ′) be two crystallizations of M and M ′ respectively. Then the following
statements are equivalent:

(1) M is homeomorphic with M ′,
(2) (Γ, γ) and (Γ′, γ′) are (I, II)-equivalent,
(3) (Γ, γ) and (Γ′, γ′) are A-equivalent,
(4) (Γ, γ) and (Γ′, γ′) are LCG-equivalent.

Theorem 2. Let M be a closed 3-manifold and (Γ, γ) be a crystallization of
M. If (Γ, γ) has a standard {23}-residue, then there is a crystallization (Γ′, γ′)
of M such that g01(Γ′, γ′) = g01(Γ, γ)− 1.

Proof. Let (Γ, γ) have a standard {23}-residue {a, b}. Then we assume, without
loss of generality, that (Γ, γ) contains a part shown in Figure 5a, where the
circles denote {01}-residues and the dashed lines denote 2-colored edges.

a

b

a c

b

de

b b

adcae

P P
QQ 2

21

1

a. (Γ, γ) b. (Γ, γ)

Figure 5

We now change this part and keep the other part unchanged to get a 4-
colored graph (Γ, γ). First we draw two parallel lines which

(1) have starting points a, e and ending points c, d, respectively and
(2) circumscribe only one {01}-residue which contains b.

Then we remove lines ae, bd and replace lines P1Q1 and P2Q2 by thick lines
which denote 3-colored edges as shown in Figure 5b. We have a 4–colored
graph (Γ, γ) which contains an extended 1-dipole generated by (P1, P2; Q1, Q2)
as shown in Figure 5b or Figure 6a. From the construction, it is clear that
(Γ, γ) is obtained from (Γ, γ) by eliminating an extended 1-dipole generated by
(P1, P2; Q1, Q2).
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We note that (Γ, γ) has a standard {23}-residue {a, b}. Moreover (a; a) gen-
erates an extended 1-dipole. By eliminating it, we have a 4-colored graph
with a dipole {b, b∗} of type 2 (see Figure 6b). Indeed a crystallization in
Figure 6b is obtained from (Γ, γ) by a LCG-move. Finally, by cancelling
the dipole {b, b∗} of type 2, we have a crystallization (Γ′, γ′) of M such that
g01(Γ′, γ′) = g01(Γ, γ)− 1. �

Let (Γ, γ) be a crystallization of a closed 3-manifold M with a standard
2-residue {a, b}. Then a crystallization (Γ′, γ′) of M constructed by using the
method in the proof of Theorem 2 is said to be generated from (Γ, γ) by LCG-
moves.

4. The manifold M(2m + 1, n, k) as a branched covering

There are two presentations corresponding to a spine ofM(2m+1, n, k). One
is the description of polyhedral 3-balls, whose finitely many boundary faces are
glued together in pairs, and the other one is a (n/d)-symmetric Heegaard split-
ting (or (n/d)-symmetric crystallization). The latter is easily obtained from a
combinatorial complex triangulating M(2m+1, n, k) by pairwise identification
of boundary 2-cells. By [1], M(2m + 1, n, k) is an (n/d)-fold cyclic covering of
the 3-sphere branched over a link of bridge number ≤ p−1+g

p−1 , where g is the
genus of M(2m + 1, n, k) and p = n

d . By the rotational symmetry, it suffices
to prove the result in case n = 2d. We now consider the polyhedral schemata
P(2m+1, 2d), which defines the closed orientable 3-manifold M(2m+1, 2d, d)
as a quotient of a triangulated 3-ball B3 by pairwise identification of its bound-
ary 2-cells (see Figure 2). Triangulate P(2m + 1, 2d) into a simplicial complex
K(2m + 1, 2d) by using stellar subdivisions (for example see a triangulation
of K(7, 4) in Figure 7). We note that outside of the exterior circle we have a
vertex and the corresponding stellar subdivision. The configuration is a sim-
plicial tessellation of the 2-sphere ∂B3 consisting of 2(2m + 1)d + 2 vertices,
6(2m + 1)d edges, and 4(2m + 1)d triangles. Let w be a point in the interior
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Figure 7. K(7, 4)

of B3. Now K(2m + 1, 2d) is just the simplicial join from w on the above tes-
sellation. Identify the two copies of each triangle in ∂K(2m + 1, 2d) so that
the corresponding oriented edges carrying the same label are glued together.
The identification produces a pseudocomplex K̃(2m + 1, 2d, d) which triangu-
lates M(2m + 1, 2d, d) consisting of 2d + 2 vertices, 2d + 2 + 4(2m + 1)d edges,
8(2m + 1)d triangles, and 4(2m + 1)d tetrahedra. Indeed K̃(2m + 1, 2d, d) is a
colored complex. We now construct the 4-colored graph Γ̃(2m + 1, 2d, d) asso-
ciated to K̃(2m + 1, 2d, d) as follows. The vertices of Γ̃(2m + 1, 2d, d) are the
elements of

Ṽ (2m + 1, 2d, d) = ({0, 2d + 1} × Z2d) ∪ ({1, 2, . . . , 2d} × Z4m).

For coloring edges of Γ̃(2m+1, 2d, d) we consider the following four fixed-point-
free involutions on Ṽ (2m + 1, 2d, d):

v0(i, j) = (i, j + (−1)j),

v1(i, j) = (i, j − (−1)j),

v2(i, j) =





(2d + 1, i− 1)
(0, 1− i)
(i + (−1)i+1µ(j), j)

if j = 0,
if j = 2m,
otherwise,

v3(i, j) =





(i + d, 2m + 1− j)
(i + d, 2m− 1− j)
(2d + 1, 1− j)

if i ∈ {1, 2, . . . , d}, i odd,
if i ∈ {1, 2, . . . , d}, i even,
if i = 0,
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where µ : Z4m\{0, 2m} → {+1,−1} is the function defined by

µ(j) =
{

+1 if 1 ≤ j ≤ 2m− 1
−1 if 2m + 1 ≤ j ≤ 4m− 1

and the arithmetic is either mod 2d or mod 4m. We now define the 4-colored
graph Γ̃(2m + 1, 2d, d) as follows: for each i ∈ ∆ two vertices x and y in
Ṽ (2m + 1, 2d, d) are joined by an i-colored edge if and only if y = vi(x). The
geometrical shape of Γ̃(2m + 1, 2d, d) consists of 2d circles Ci which are {01}-
residues of length 4m cyclically set on the plane following the natural order of
the set {1, 2, . . . , 2d}, and of two circles C0, C2d+1 of length 2d which are {01}-
residues of length 2d. For each i ∈ {0, . . . , 2d}, the vertex set of Ci consists of
pairs (i, j) for any j ∈ Z4m. The vertex sets of C0 and C2d+1 consist of pairs
(i, j) for any j ∈ Z2d. We cyclically order the vertices (i, j) of each Ci following
the natural order of j in Z4m(or Z2d) so that all these orderings induce the
clockwise (resp. anti-clockwise) orientation of the plane when i is odd (resp.
even). There are exactly 2m − 1 2-colored edges between Ci and Ci+1 (resp.
Ci and Ci−1) for any i = 1, . . . , 2d (here 0 ≡ 2d). There is exactly one 2-
colored edge between Ci and C2d+1 (resp. Ci and C0) for any i = 1, . . . , 2d.
Furthermore there are exactly 4m 3-colored edges between Ci and Ci+d for
any i = 1, . . . , d, and 2d 3-colored edges between C0 and C2d+1. For the simple
notation of vertices, we order vertices linearly by the lexicographic ordering:

(i, j) < (k, l) if i < k, or i = k and j < l.

First we do numbering for the vertices of C1 to Cd by the lexicographic ordering.
That is, we use numbers 1 to 4md for the numbering of the vertices of C1

to Cd, for example 1 for (1, 0), 2 for (1, 1) and so on. We then order the
vertices of C0 by using numbers 4md + 1 to 4md + 2d. For the rest of vertices
in Cd+1, . . . , C2d+1 we do as follows; if the vertex is connected to a vertex
numbered k by a 3-colored edge, then we number the vertex by k. (For example
see Figure 8 for the crystallization of Γ̃(2m + 1, 4, 2) with numbered vertices.)
Summarizing the above argument we have:

Lemma 1. The closed orientable 3-manifold M(2m + 1, 2d, d) is represented
by a 4-colored graph Γ̃(2m + 1, 2d, d).

We also note that in the above method of stellar subdivision which triangu-
lates P(2m + 1, 2d) into a simplicial complex K(2m + 1, 2d) is independent of
d. Thus we can prove the following theorems by using the special numbers d
without loss of generality. Indeed we use the same method as one in [5].

Theorem 3. The closed orientable 3-manifold M(2m + 1, 2d, d) is a 2-fold
strongly cyclic covering of the 3-sphere branched over L(m,d), where d is even.
Furthermore, M(2m + 1, 2d, d) is a 2d-fold cyclic branched covering of Wm

in the 3-sphere, where the branched indices of its components are 2d and 2,
respectively.
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3m+1

3m-6

m -2

Figure 9. A 2-symmetric crystallization Γ(2m + 1, 4, 2) in-
ducing an link

Proof. We note that M(2m+1, 2d, d) can be represented by a 4-colored graph
Γ̃(2m + 1, 2d, d) by Lemma 1. Thus it suffices to prove that a 2-symmetric
crystallization Γ(2m + 1, 2d, d) is obtained from Γ̃(2m + 1, 2d, d) by a finite
sequence of LCG-moves. For simplicity we now restrict our case to d = 2.
One can immediately extend the construction for the general cases by a simple
iteration. We let a subgraph Γ̃(2m + 1, 4, 2) be regularly embedded in the
plane. To see standard 2-residues specifically, we consider a crystallization
based on (02; 1). Then it consists of (4m − 4) {02}-colored cycles of length
4 and four {02}-colored cycles of length 6. Now the crystallization Γ(2m +
1, 4, 2) contains (4m + 2) standard {02}-residues. By applying a LCG move
for a standard {02}-residue, we have a 4-colored graph Γ′(2m + 1, 4, 2) such
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that g02(Γ′(2m + 1, 4, 2)) = g02(Γ(2m + 1, 4, 2)) − 1. Note that g02(Γ(2m +
1, 4, 2)) = 4m and g02((Γ′(2m + 1, 4, 2))) = 4m− 1. Repeating this procedure
for (3m− 1) standard {02}-residues, we obtain a crystallization Γ(2m+1, 4, 2)
with g02(Γ(2m+1, 4, 2)) = 4m− (3m−1) = m+1, which yields a 2-symmetric
crystallization as shown in Figure 9, where dashed lines denote the axis of a 2-
symmetric Heegaard splitting induced by a 2-symmetric crystallization. Thus
M(2m + 1, 4, 2) is the 2-fold covering of the 3-sphere branched over a link.
Using Reidemeister moves, it is immediate to verify that this link is equivalent
to a 3-bridge link L(m,2).

For the second statement, we simply note that L(m,d) has a component which
can be regarded as the axis of symmetry of order d. This symmetry produces
a d-fold cyclic branched covering of Wm in the 3-sphere, where the branched
indices of its components are 2d and 2, respectively. �

We now explicitly describe the procedures described in Theorem 3 for M(7,
4, 2) which is the case m = 3 and d = 2. On the basis of the triangulation
in Figure 7 we have a crystallization Γ̃(7, 4, 2) based on (01; 2) as shown in
Figure 10a. We now change the crystallization based on (01; 2) to one based
on (12; 0) to see standard {03}-residues (see Figure 10b). We note that there

13
25

1

13

25

1

a. Based on (01; 2) b. Based on (12; 0)

Figure 10

is a standard {03}-residue {18, 19}. Applying a LCG move for {18, 19}, we
have a 4-colored graph as shown in Figure 11a. We can do the same job for
a standard {03}-residue {13, 24} in a 4-colored graph. One application of a
LCG move reduces the number of {03}-residues by one. We can continue this
procedure 8 times to get a crystallization shown in Figure 11b which is a 2-
symmetric crystallization of M(7, 4, 2). Thus M(7, 4, 2) is the 2-fold covering
of the 3-sphere branched over a 4-bridge link. Using Reidemeister moves, it is
immediate to verify that this link is equivalent to L(3,2).
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13

24

24

13

a. Based on (01; 2) b. 2-symmetric crystallization

Figure 11

Theorem 4. The closed orientable 3-manifold M(2m + 1, 2d, d) is a 2-fold
strongly cyclic covering of the 3-sphere branched over L(m,d), where d is odd.
Furthermore, M(2m + 1, 2d, d) is 2d-fold cyclic branched covering of Wm in
the 3-sphere, where the branched indices of its components are 2d and 2, re-
spectively.

Proof. We consider the case d = 3 that can be immediately extended to the
construction for the general cases by a simple iteration as in Theorem 3. That
is, we claim that P(2m+1, 6) can be represented by a 2-symmetric crystalliza-
tion Γ(2m+1, 6, 3). Let P(2m+1, 6) be the polyhedral schemata which defines
the closed orientable 3-manifold M(2m + 1, 6, 3) as a quotient of a triangu-
lated 3-ball B3 by pairwise identification of its boundary 2-cells. Triangulate
P(2m + 1, 6) into a simplicial complex K̃(2m + 1, 6, 3). There are two distinct
ways to triangulate P(2m + 1, 6) depending on the parity of m. For example,
we see two triangulations for P(7, 6) and P(9, 6), where m = 3 and 4, respec-
tively in Figure 12. We can handle the general cases by a natural extension.

a. K̃(7, 6, 3) b. K̃(9, 6, 3)

Figure 12
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By the same way in the proof of Theorem 3, we can construct a crystallization
Γ̃(2m + 1, 6, 3) associated to K̃(2m + 1, 6, 3) as follows.

Case i) m = 2t + 1 and t ≥ 0.
The vertices of Γ̃(2m + 1, 6, 3) are the elements of

Ṽ (2m + 1, 6, 3) = {(i, j(i)) | i = 1, 2, . . . , 18} ∪ {O, O′},
where 




1 ≤ j(i) ≤ m + 3 if i = 1, 2, 3,
1 ≤ j(i) ≤ 2m + 2 if i = 4, 5, 6,
1 ≤ j(i) ≤ m + 3 if i = 7, 8, 9,

1 ≤ j(i) ≤ 2 if i = 10, 11, 12,
1 ≤ j(i) ≤ 2m− 4 if i = 13, 14, 15,
1 ≤ j(i) ≤ 2m− 8 if i = 16, 17, 18.

For colored edges, we consider a permutation η which is of order 3:

η = (1, 2, 3)(4, 5, 6)(7, 8, 9)(10, 11, 12)(13, 14, 15)(16, 17, 18)

on X = {0, 1, 2, . . . , 18} and a subset V1 of Ṽ (2m + 1, 6, 3);

V1 = {(i, j(i))|i = 1, 4, 7, 10, 13, 16 } ∪ {O, O′}
with the following edge-colorations;

v0(O′) = O,
v0(1, 1) = (11, 2), v0(1, 2) = (12, 1), v0(1, 3) = (9,m + 2),
v0(1, 4) = (9,m + 3), v0(1, j) = (18,m + 1− j), 5 ≤ j ≤ m,
v0(1,m + 1) = (6, 4), v0(1, m + 2) = (6, 5),
v0(4, 1) = (1, 2), v0(4, 2) = (5,m + 4), v0(4, 3) = (5,m + 5),
v0(4, 4) = (2,m + 1), v0(4, 5) = (2,m + 2),
v0(4, j) = (16, 2m + 2), 6 ≤ j ≤ m + 3, v0(4,m + 4) = (6, 2),
v0(4,m + 5) = (6, 3), v0(4, j) = (18, 3m− 2− j), m + 6 ≤ j ≤ 2m + 1,
v0(4, 2m + 2) = (9, 1),
v0(7, 1) = (5, 2m+2), v0(7, 2) = (5, 1), v0(7, j) = (14,m−1− j), 3 ≤ j ≤ m,
v0(7,m + 1) = (1,m + 3), v0(7,m + 2) = (2, 3), v0(7,m + 3) = (2, 4),
v0(10, 2) = (3, 1), v0(10, 1) = (2, 2),

v0(14, j) =
{

(9,m + 1− j),
(5, 2m + 2− j),

if 1 ≤ j ≤ m− 2,
if m− 1 ≤ j ≤ 2m− 4,

v0(16, j) =
{

(2,m + 1− j),
(5, 3m− 2− j),

if 1 ≤ j ≤ m− 4,
if m− 3 ≤ j ≤ 2m− 8,

v1(1, j) = (1, j − (−1)j), where j ∈ Zm+3,

v1(4, j) = (4, j + (−1)j), where j ∈ Z2m+2,
v1(13, j) = (13, j + 1), 1 < j < 2m− 2, j even,
v1(13, 1) = (3,m + 3), and v1(13, 2m− 4) = (3,m + 2),

v1(16, 2j) = (16, 2j − 1), 1 < 2j ≤ 2m− 8, j even, j 6= m− 3,
v1(10, 1) = (7,m + 2), and v1(10, 2) = O′,
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v2(1, 1) = O,
v2(4, 1) = (13,m− 2) and v0(4, 2) = (13,m− 1),
v2(4, 3) = (16, 2m− 8), and v0(4, 4) = (17, 1),
v2(4, j) = (8,m + 4− j), 5 ≤ j ≤ m + 2,
v2(4, j) = (1, 2m + 4− j), m + 3 ≤ j ≤ 2m + 2,

v2(7, j) = (7, j − (−1)j), where j ∈ Zm+3,
v2(10, 1) = (8,m), and v2(10, 2) = (8,m + 1),
v2(13, j) = (13, j − 1), 1 < 2j < 2m− 4, j even, j 6= m− 1,
v2(16, j) = (16, j + 1), 1 < j < 2m− 8, j even,

v3(1, j) = (1, j + (−1)j), where j ∈ Zm+3,

v3(4, j) = (4, j − (−1)j), where j ∈ Z2m+2,

v3(7, j) = (7, j − (−1)j), where j ∈ Zm+3,
v3(10, 1) = (10, 2),
v3(13, j) = (13, 2m− 3− i),
v3(16, j) = (16, 2m− 7− i).

We define an action of η on V by

η(v, w) = (η(v), w) for (v, w) ∈ V \{O,O′}, and
η fixes O and O′.

Furthermore for edge-colorations,

if y = vi(x) for x, y in V , then we define η(y) = vη(i)(η(x)).

Since V1∪ η(V1)∪η2(V1) = V , a function η and an edge-coloration of V1 produce
a crystallization Γ̃(2m + 1, 6, 3) associated to K̃(2m + 1, 6, 3).

For example, we consider the case Γ̃(7, 6, 3). One can easily extend to the
general case Γ̃(2m + 1, 6, 3) by a simple extension. We have an crystallization
based on (01; 2) associated to K̃(7, 6, 3) in Figure 13a. There exist 10 standard
{01}-residues. By the same method in Theorem 3 and example following, we
reduce the number of {01}-residues.

Note that the result does not depend on the choice of a standard 2-residue.
First we remove a standard 2-residue {20, 28} as shown in Figure 13a. We
apply a LCG move for {20, 28} to get Figure 13b which has a standard 2-
residue {9, 10}. We apply a LCG move for {9, 10}. We can continue the same
procedure until we remove all standard 2-residues. Note that each time we can
reduce the genus by one. Finally we obtain the 2-symmetric crystallization
Γ(7, 6, 3) as shown in Figure 14a, where dashed lines denote the axis of a 2-
symmetric Heegaard splitting induced by a 2-symmetric crystallization.
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a. b.

Figure 13

a. Γ(7, 6, 3) b. The link L(3,3)

Figure 14

By applying Reidemeister moves on a 4-bridge link induced by a 2-symmetric
crystallization Γ(7, 6, 3), we can easily verify that the link is equivalent to the
link L(3,3) as shown in Figure 14b.

Case ii) m = 2t
We can apply the same argument for case i) with the following edge-colora-

tions of V1;
v0(O) = O′,
v0(1, 1) = (11, 2), v0(1, 2) = (12, 1), v0(1, j) = (18,m+2−j), 3 ≤ j ≤ m+1,
v0(1,m + 2) = (6, 2),
v0(1,m + 3) = (6, 3),
v0(1,m + 4) = (7,m + 2),
v0(4, 1) = (9, 2), v0(4, 2) = (2,m + 2),
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v0(4, j) =
{

(15, 2m + 2− j),
(18, 3m− 3− j),

if 3 ≤ j ≤ m + 2,
if m + 3 ≤ j ≤ 2m− 1,

v0(4, 2m) = (9, 1),
v0(7, 1) = (5, 2m), v0(7, 2) = (5, 1), v0(7, j) = (18,m+2− j), 3 ≤ j ≤ m+1,
v0(7,m + 2) = (1,m + 4), v0(7,m + 3) = (2, 3), v0(7,m + 4) = (2, 4),
v0(10, 2) = (3, 1), v0(10, 1) = (2, 2),

v0(13, j) =
{

(9,m + 2− j),
(5, 2m− 2− j),

if 1 ≤ j ≤ m− 1,
if m ≤ j ≤ 2m− 2,

v0(16, j) =
{

(2,m + 2− j),
(5, 3m− 3− j),

if 1 ≤ j ≤ m− 3,
if m− 2 ≤ j ≤ 2m− 6,

v1(1, j) = (1, j + (−1)j), where j ∈ Zm+3,

v1(4, j) = (4, j − (−1)j), where j ∈ Z2m+2,

v1(7, j) = (7, j + (−1)j),
v1(13, j) = (13, 2m− 3− j),1 ≤ j ≤ 2m− 4,
v1(16, j) = (16, 2m− 5− j),1 ≤ j ≤ 2m− 6,
v1(10, 1) = (10, 2),

v2(1, 1) = O,
v2(1, j) = (4, 2m + 2− j), 2 ≤ j ≤ m + 1,

v2(1,m + 2) = (8, 2),
v2(1,m + 3) = (14, 2m− 2), v2(1,m + 4) = (14, 1),

v2(4, 1) = (13,m− 1), v2(4, 2) = (16, 1),
v2(4, j) = (8,m + 3− j), 3 ≤ j ≤ m,

v2(7, j) = (7, j − (−1)j), where j ∈ Zm+4,
v2(10, 1) = (8,m + 1), v2(10, 2) = (8,m + 2),
v2(13, j) = (13, j − 1), 1 < j < 2m− 2,j even, j 6= m,
v2(16, j) = (16, j + 1), 1 < j < 2m− 6 and j even,

v2(16, 2m− 6) = (13,m),

and

v3(1, j) = (1, j − (−1)j), where j ∈ Zm+3,

v3(4, j) = (4, j + (−1)j), where j ∈ Z2m+2,
v3(7,m + 3) = (10, 1), v3(7, m + 4) = (16, m− 3),

v3(7, 1) = (16,m− 2),
v3(10, 2) = O′,
v3(13, 1) = (3,m + 4), v3(13, 2m− 4) = (3,m + 3),
v3(13, j) = (13, j + 1), j even,1 < j < 2m− 4,
v3(16, j) = (16, j − 1), j even,1 ≤ j ≤ 2m− 6, j 6= m− 2.



1136 SOO HWAN KIM AND YANGKOK KIM

The same argument for Theorem 3 can be applied for the second statement. �

We denote by On/d(L(m,d)) an orbifold whose underlying space is the 3-
sphere and whose singular set is L(m,d) with branched index n/d. Similarly by
On,n/d(Wm) we denote an orbifold whose underlying space is the 3-sphere and
whose singular set is Wm with the branched indices of its components are n
and n/d, respectively. Then we obtain the following result.

Theorem 5. The closed connected orientable 3-manifold M(2m+1, n, k) is an
(n/d)-fold strongly cyclic covering of the 3-sphere branched over L(m,d), where
d = (n, k). Furthermore, M(2m + 1, n, k) is an n-fold cyclic branched covering
of Wm in the 3-sphere, where the branched indices of its components are n and
n/d, respectively.

Proof. We note that M(2m + 1, 2d, d) is a 2-fold strongly cyclic branched cov-
ering of the 3-sphere over L(m,d) by Theorems 3 and 4. Hence M(2m+1, 2d, d)
admits a 2-symmetric Heegaard splitting. As a sense of [1] M(2m+1, n, k) ad-
mits an (n/d)-symmetric Heegaard splitting by the rotational symmetry, where
d = (n, k). By [1], M(2m + 1, n, k) is an (n/d)-fold strongly cyclic branched
covering of the 3-sphere over L(m,d). We note that L(m,d) has an unknotted
component which is the axis of d-symmetry of the chain (see Figure 1). Hence
On,n/d(Wm) is the 3-sphere branched over Wm whose branched indices of its
components are n and n/d, respectively. That is, we have the following com-
mutative diagram of branched coverings:

M(2m + 1, n, k) n/d−−−−−−→ On/d(L(m,d))

|| d↓
M(2m + 1, n, k) n−−−−→ On,n/d(Wm)

where the labels of the maps indicate the degree of the covering. �
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