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FINITE GROUPS WHICH HAVE
MANY NORMAL SUBGROUPS

Qinhai Zhang, Xiaoqiang Guo, Haipeng Qu, and Mingyao Xu

Abstract. In this paper we classify finite groups whose nonnormal sub-
groups are of order p or pq, where p, q are primes. As a by-product, we
also classify the finite groups in which all nonnormal subgroups are cyclic.

1. Introduction

As is well known, normal subgroups of a group play an important role in de-
termining the structure of a group. Two classical classes of groups are Dedekind
groups and finite simple groups. The classification of the above two kinds of
finite groups have been completed, see [2] and [3]. It is easy to see that the
number of nontrivial normal subgroups of a finite group has great influence on
its structure. This motivates us to study finite groups which have “many” nor-
mal subgroups or “few” normal subgroups. Along one of the two lines, Zhang
and Cao [9] determined finite groups which have an unique nontrivial normal
subgroups. Along another of the two lines, it is natural to ask: what can be
said about finite groups which have “many” normal subgroups? In this pa-
per, a finite group G which has “many” normal subgroups means that a finite
group whose nonnormal subgroups are of order p or pq, where p, q are primes
(not necessarily distinct). Passman gave a classification of finite p-groups all
of whose nonnormal subgroups are of order p (see [6, Proposition 2.4]) and are
cyclic (see [6, Proposition 2.9]). This paper can be regards as a continuation
of Passman’s work.

The notation and terminology we use are standard; see [4] for instance. But
we use Cn, D2n , Q2n and Cm

n to denote a cyclic group of order n, a dihedral
group of order 2n, a generalized quaternion group of order 2n and the direct
product of m cyclic groups of order n, respectively. If A and B are subgroups
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of G with G = AB and [A,B] = 1, we call G a central product of A and B,
denoted by G = A ∗ B. Clearly, A ∩ B ≤ Z(G). In this paper, we always
assume A ∩B 6= 1.

2. Preliminaries

A group G is said to be a minimal non-nilpotent group if G is not nilpotent
but all proper sections of G are nilpotent; G is said to be inner abelian if G is
nonabelian but all of its proper subgroups are abelian.

Theorem 2.1 (Rédei). Assume that G is an inner abelian p-group. Then G
is one of the following groups:

(1) M(m,n) = 〈a, b
∣∣ apm

= bpn

= 1, ab = a1+pm−1〉, m ≥ 2, n ≥ 1,
(metacyclic).

(2) M(m,n,1) = 〈a, b, c
∣∣ apm

= bpn

= cp = 1, [a, b] = c, [c, a] = [c, b] = 1〉, if
p = 2, m + n ≥ 3 (non-metacyclic).

(3) Q8.

Lemma 2.2 ([6, Lemma 2.1]). Suppose G is not a Dedekindian p-group. Then
there exists a K E G with |G′ : K| = p such that G/K is not Dedekindian.

Theorem 2.3 ([6, Proposition 2.4]). Suppose that all nonnormal subgroups of
a non Dedekindian p-group G have order p. Then one of the following holds:

(1) G ∼= M(m,1);
(2) G ∼= D8 ∗ C2n , n ≥ 2;
(3) G ∼= M(1,1,1) ∗ Cpn ;
(4) G ∼= D8 ∗Q8.

We can get the following result from the proof of [1, Lemma 5.2].

Lemma 2.4. Let E be an inner abelian subgroup of a p-group G. If [G,E] =
E′, then G = E ∗ CG(E).

Remark 2.5. [1, Lemma 5.3] is a stronger result than Lemma 2.4. The authors
do not assume that E is inner abelian and get the same result as in Lemma 2.4.
However, there is a minor error in the proof of [1, Lemma 5.3] and we cannot
fix it. In fact, we find a counterexample for that lemma. Let G = Q8 ∗Q8 and
E = Q8 ∗ C4. Then CG(E) ≤ E and E ∗ CG(E) ≤ E. Thus, G 6= E ∗ CG(E).

Proposition 2.6. Let G be a finite p-group with |G′| = p. If H ≤ G and
H � Z(G). Then H EG if and only if G′ ≤ H.

Proof. It is straightforward. �

Proposition 2.7. Let G = M ∗C, where M ∼= M(m,1) and C ∼= Cpn . Assume
that M ∩ C ∼= Cpi , 1 ≤ i ≤ n− 1.

(1) If m > n, then G ∼= M(m,1) × Cpn−i .
(2) If m ≤ n, then G ∼= M(m−i,1,1) ∗Cpn with M(m−i,1,1)∩Cpn = M ′

(m−i,1,1).
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Proof. Assume that M = 〈a, b
∣∣ apm

= bp = 1, ab = a1+pm−1〉. Then Z(M) =
〈ap〉. Since M ∩ C ∼= Cpi , letting C = 〈c〉, we may assume cpn−i

= apm−i

.
If m > n, letting c1 = ca−pm−n

, then o(c1) = pn−i and G = M × 〈c1〉, (1)
holds. If m ≤ n, letting a1 = ac−pn−m

, then o(a1) = pm−i and M1 = 〈a1, b〉 ∼=
M(m−i,1,1). We have G = M1 ∗ C and M1 ∩ C = 〈apm−1〉 = M ′

1, the derived
subgroup of M(m−i,1,1), (2) holds. �
Proposition 2.8. Q8 ∗C2m ∼= D8 ∗C2m ≤ Q8 ∗M(m,n), where Q8 ∩M(m,n) =
M ′

(m,n), m ≥ 2.

Proof. This follows from the well-known fact that Q8 ∗ C4
∼= D8 ∗ C4. �

3. Finite non-p-groups having “many” normal subgroups

Assume G is a finite group, and |G| = Πs
i=1p

ki
i , where pi is a prime, i =

1, 2, . . . , s, and pi 6= pj when i 6= j. For convenience we write w(G) = Σs
i=1ki.

Theorem 3.1. Assume that G is a nilpotent group but not a group of prime
power order. If each subgroup H of G with w(H) ≥ 3 is normal, then G is
Dedekindian or G = P × H, where P ∈ Sylp(G) and P is one of the groups
listed in the Theorem 2.3, H ∼= Cq, where q( 6= p) is a prime.

Proof. If G is not Dedekindian, by hypothesis, there exists P ∈ Sylp(G) such
that P is not Dedekindian. Thus there exists L < P and L 6 P . Let G =
P ×H. It follows that L×H 6 G. By hypothesis again we get |H| = q, where
q(6= p) is a prime. It follows that all nonnormal subgroups of P have order p.
The conclusion follows from Theorem 2.3. �
Lemma 3.2. Assume G is a finite group. If each nonnormal subgroup H of
G with w(H) ≥ 3 is abelian, then G has a normal Sylow subgroup which has a
nonnormal complement in G. Moreover, G is solvable.

Proof. We prove by induction on |G|. First we prove that G has a normal Sylow
subgroup. Assume that p is the smallest prime divisor of |G|, P ∈ Sylp(G) and
P 6 G. Then NG(P ) 6 G. If |P | = p, then it is easy to see NG(P ) = CG(P ).
If |P | ≥ p2, then P and NG(P ) is abelian by hypothesis, and we also get
NG(P ) = CG(P ). Hence P has a normal complement H by the Burnside’s
p-nilpotency criterion. Since |H| < |G|, H has a normal Sylow subgroup which
is also normal in G.

Let P be a normal Sylow subgroup of G and H be a complement of P in
G. If H is nonnormal, the conclusion holds. Assume H is normal. Then H is
non-nilpotent. Since |H| < |G|, H has a normal Sylow subgroup Q which has
a nonnormal complement K in H. Then QEG and the complement P ×K of
Q is not normal in G. The proof is completed. �
Lemma 3.3. Assume G is a non-nilpotent group whose nonnormal subgroups
are cyclic. Then G ∼= P o H, where P is a Sylow subgroup and H is cyclic.
Moreover, d(P ) ≤ 2, [Φ(P ),H] = 1 and Φ(P ) is cyclic.
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Proof. By Lemma 3.2, we may take P ∈ Sylp(G) and H ≤ G such that P CG,
H 6 G and G ∼= P oH. By assumption, H is cyclic.

If HΦ(P ) E G, then [P,H] ≤ P ∩ HΦ(P ) = Φ(P ). By [5, 8.2.7 (a)], P =
CP (H)[P, H] = CP (H). Then G is nilpotent, a contradiction. So HΦ(P ) 6 G
and hence HΦ(P ) is cyclic. We have [Φ(P ), H] = 1 and Φ(P ) is cyclic.

Assume d(P ) ≥ 3. Write G = G/Φ(P ), P = P/Φ(P ) and H =HΦ(P )/Φ(P ).
Let M be a maximal subgroup of P . Since d(P ) = d(P ) ≥ 3, we have d(M) ≥ 2
and M is not cyclic. Since the hypothesis of the lemma is inherited to factor
groups, we have M EG. It follows that MH is a non-cyclic subgroup of G and
hence MH E G. Therefore

⋂
MlP MH = H E G and hence HΦ(P ) E G, a

contradiction. So we have d(P ) ≤ 2. �

Theorem 3.4. Assume G is a non-nilpotent group whose nonnormal subgroups
are cyclic. Then G is one of the following groups:

(i) Cp o Cn, where p is a prime;
(ii) C2

p oCn, where p is a prime, (p, n) = 1 and Cn acts irreducibly on C2
p ;

(iii) (Q8 o C3m)× Cn, where (2, n) = (3, n) = 1.

Proof. It is easy to check that all groups listed in Theorem 3.4 satisfy the
hypothesis. It suffices to show the converse.

By Lemma 3.3, we have G = P o H, where d(P ) ≤ 2, [Φ(P ),H] = 1 and
Φ(P ) is cyclic.

If P is abelian, then P = CP (H) × [P, H] by [5, 8.4.2]. If 1 < N ≤ [P, H]
and N E G, then NH is non-abelian, and hence NH E G. It follows that
[P,H] ≤ [P, H] ∩ NH = N . Thus [P, H] is a minimal normal subgroup of G.
Since G is solvable and non-cyclic subgroups of G are normal, [P,H] ∼= Cp or
C2

p . We get a group of type (i) or (ii).
Assume that P is non-abelian. Write G = G/f1(P ′), P = P/f1(P ′) and

H = Hf1(P ′)/f1(P ′). We have |P ′| = p. Noting that d(P ) = 2, P is inner
abelian. Since Φ(P ) is cyclic, P ∼= M(m,1), M(1,1,1) or Q8 by Theorem 2.1.
Now we claim that [P , H] 6= 1. Assume the contrary, [P,H] ≤ f1(P ). By [5,
8.2.7(a)], P = CP (H)[P, H] = CP (H). Thus G is nilpotent, a contradiction.

If P ∼= D8, then H/CH(P ) . Aut(D8) ∼= D8. Hence H = CH(P ), contra-
dicting the fact that [P , H] 6= 1. If P ∼= M(m,1), where m ≥ 3 when p = 2,
then Ω1(P ) ∼= C2

p and hence Ω1(P ) E G. It follows that Ω1(P )H E G. Hence
[P , H] ≤ P ∩Ω1(P )H = Ω1(P ). Since [Φ(P ),H] = 1, we have |[Ω1(P ), H]| ≤ p
by [5, 8.4.2]. By [5, 8.2.7(b)], [P , H] = [P , H, H], and hence |[P , H]| ≤
|[Ω1(P ),H]| ≤ p. We may take a, b ∈ P such that a ∈ CP (H), b generates
[P , H] and P = 〈a, b

∣∣ apm

= bp = 1, ab = a1+pm−1〉. Let H = 〈c〉 and bc = bk,
where 0 ≤ k < p. Then [a, b] = [a, b]c = [a, bk] = [a, b]k. Hence k = 1. This is
contrary to [〈b〉, H] = 〈b〉. If P ∼= M(1,1,1), noting that all maximal subgroup
of M(1,1,1) is not cyclic, we may get a contradiction by an argument similar to
that in the proof of Lemma 3.3.
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Thus we have that P ∼= Q8 and hence |P : P ′| = 4. It follows that P is
a 2-group of maximal class by [4, III, Satz 11.9]. Note that Q8 cannot be a
proper quotient group of any 2-group of maximal class. We have P = P ∼= Q8

and we get a group of type (iii). �

Corollary 3.5. Assume G is a non-nilpotent group whose nonnormal sub-
groups are of prime order. Then G is a minimal non-nilpotent group of order
pq or p2q.

Theorem 3.6. Assume that G is a non-nilpotent group and p, q, r are primes
(not necessarily distinct). If each subgroup H of G with w(H) ≥ 3 is normal,
then G is one of the following groups:

(i) a non-nilpotent group G with w(G) ≤ 3;
(ii) H × Cp, where H is a minimal non-nilpotent group of order p2q;
(iii) a minimal non-nilpotent group of order p3q;
(iv) P oCq, where P is a group of order p3 and G/Ω1(Φ(P )) is a minimal

non-nilpotent group of order p2q;
(v) C2

p oH, where |H| = qr and H acts irreducibly on C2
p ;

(vi) C3
p oH, where |H| = qr and each nonidentity element acts irreducibly

on C3
p .

Proof. It is easy to check that all groups listed in Theorem 3.6 satisfy the
hypothesis. It suffices to show the converse.

If w(G) ≤ 3, we get the groups of type (i). From now on we always as-
sume w(G) ≥ 4. By Lemma 3.2, G has a normal Sylow subgroup P having a
nonnormal complement H in G. By the hypothesis, w(H) ≤ 2 and w(P ) ≥ 2.

If w(H) = 1, then |P | ≥ p3. We claim that |P | = p3. Since w(G) ≥ 4,
G has a nonnormal subgroup K with w(K) = 2 by Corollary 3.5. If there is
a normal subgroup N of G satisfying N ≤ P and |N | = p, then G/N satisfy
the hypothesis of Corollary 3.5, and hence |P | = p3. So we may assume that
there is no normal subgroup N of G with the above conditions. If P ′ 6= 1, then
|P ′| ≥ p2. By hypothesis G/P ′ is Dedekindian. Thus [H,P ] ≤ P ′. By [5, 8.2.7
(a)], P = CP (H)[P, H] = CP (H). Hence G is nilpotent, a contradiction. So P
is abelian, and hence CP (H) ≤ Z(G) ∩ P = 1. Thus P = [P, H] by [5, 8.2.7
(a)]. Let N E G with N ≤ P and |N | ≥ p2. Then NH E G. It follows that
P = [P, H] ≤ NH ∩ P = N . Therefore P is a minimal normal subgroup of G
and hence |P | = p3 by the assumption of the theorem.

If Ω1(Φ(P )) 6= 1, then G/Ω1(Φ(P )) satisfy the hypothesis of Corollary 3.5.
We get the groups of type (iv). Assume now that Ω1(Φ(P )) = 1. Then P
is elementary abelian, and P = CP (H) × [P,H] by [5, 8.4.2]. It follows that
G = CP (H) × ([P, H] o H). We claim that CP (H)H 6 G (If CP (H)H E G
then [P, H] ≤ P ∩ CP (H)H = CP (H), implying that G is nilpotent). Hence
|CP (H)| ≤ p. By an argument similar to that in the proof of Theorem 3.4,
[P,H] is a minimal normal subgroup and we get the groups of type (ii) and
(iii).
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Assume w(H) = 2. Since CP (H)H is nonnormal in G, CP (H) = 1 and
hence P = [P, H] by [5, 8.2.7 (a)]. If there is a normal subgroup N of P
satisfying 1 < N < P , then w(NH) ≥ 3 and NHEG. Therefore P = [P,H] ≤
NH ∩ P = N , a contradiction. So P is a minimal normal subgroup of G and
hence P ∼= C2

p or C3
p . If P ∼= C2

p , we get the groups of type (v). If P ∼= C3
p ,

let K be a minimal subgroup of H. We claim that K acts irreducibly on P .
Otherwise, we may assume N is a K-invariant subgroup of order p2 by [5, 8.4.5].
Hence w(NK) = 3 and NK EG. Thus N = NH ∩P EG, this contradicts the
minimality of P . We get the groups of type (vi) in this case. �

4. Finite p-groups having “many” normal subgroups

In this section we deal with the p-group case. We always assume the follow-
ing.

Assumption: G is a finite p-group all of whose subgroups of order ≥ p3 are
normal, and that G has at least one nonnormal subgroup of order p2.

Lemma 4.1. |G′| ≤ p2.

Proof. Assume |G′| > p2. By Lemma 2.2, G has a normal subgroup K with
|G′ : K| = p such that G/K is not Dedekindian. Hence G/K has a nonnormal
subgroup H/K. It follows that H 6 G. Since |K| ≥ p2, we get |H| ≥ p3, a
contradiction. �

By Lemma 4.1, we divide our analysis into two cases: (1) |G′| = p, and (2)
|G′| = p2.

Lemma 4.2. Assume |G′| = p, H ≤ G, H is not a Dedekind group and Z(H)
is cyclic. Then all subgroups of CG(H) of order ≥ p2 are normal in G.

Proof. By hypothesis, it is easy to see that G′ = H ′ is a unique subgroup
of Z(H) of order p. Assume that N ≤ CG(H), |N | = p2 and N 6 G. Let
M 6 H. Then M � CG(H), and hence M � N . It follows that |MN | ≥ p3

and MN E G. Since MN � Z(G), G′ ≤ MN by Proposition 2.6. Hence
G′ ≤ MN ∩H = M(N ∩H). Since N 6 G, G′ � N ∩H ≤ Z(H). It follows
that N ∩H = 1. Hence G′ ≤ M and M EG, a contradiction. �
Theorem 4.3. Assume |G′| = p. Then G is one of the following non-isomor-
phic groups:

(i) G ∼= M(1,1,1) ∗M(m,1);
(ii) G ∼= M(1,1,1) ∗M(1,1,1) ∗ Cpn ;
(iii) G ∼= D8 ∗M(m,1), m ≥ 3;
(iv) G ∼= D8 ∗D8 ∗ C2n ;
(v) G ∼= D8 ∗D8 ∗Q8;
(vi) G ∼= (D8 ∗Q8)× C2;
(vii) G ∼= (M(1,1,1) ∗ Cpn)× Cp;
(viii) G ∼= (D8 ∗ C2n)× C2;



FINITE GROUPS WHICH HAVE MANY NORMAL SUBGROUPS 1171

(ix) G ∼= M(m,1) × Cp, where m ≥ 3 when p = 2;
(x) G ∼= M(2,1,1) ∗ Cpn , where M(2,1,1) ∩ Cpn = M ′

(2,1,1);
(xi) G ∼= M(2,1,1) ∗Q8, where M(2,1,1) ∩Q8 = M ′

(2,1,1);
(xii) G ∼= Q8 × C4;
(xiii) G ∼= M(m,2).

Proof. (⇒) By Theorem 2.1, it is easy to check that inner abelian groups
whose nonnormal subgroups have order at most p2 are M(m,2), M(m,1), M(2,1,1),
M(1,1,1) and Q8. Since G is nonabelian, G has inner abelian subgroups. We
distinguish the following five cases:
Case 1. G has a subgroup H which isomorphic to M(1,1,1) or D8.

By Lemma 2.4 and Lemma 4.2, G = H∗CG(H), where CG(H) is a Dedekind
group or a group listed in Theorem 2.3.

If CG(H) is a group listed in Theorem 2.3, it is easy to see G is a group of
type (i), (ii), (iii), (iv) or (v).

Assume CG(H) is a Dedekind group. If CG(H) ∼= Q8 × Ck
2 , then G ∼=

(D8 ∗Q8)× Ck
2 and it is easy to see that k = 1, we get the group of type (vi).

Assume CG(H) is abelian. If CG(H) is elementary abelian, then G ∼= H ×
Ck

p = (H ∗ Cp) × Ck
p . If CG(H) is not elementary abelian, taking N ≤ H

and N 6 H, then for any x ∈ CG(H) with o(x) > p, we have |N〈x〉| ≥ p3,
hence N〈x〉 E G. By Proposition 2.6, G′ ≤ N〈x〉 ∩ CG(H) = 〈x〉. Thus
CG(H) ∼= Cpn × Ck

p and G ∼= (H ∗ Cpn)× Ck
p , where n > 1. In either case, we

have G ∼= (H ∗Cpn)×Ck
p , where n ≥ 1. By hypothesis, it is easy to see k = 1.

we get a group of type (vii) or (viii).
Case 2. G has no subgroup isomorphic to M(1,1,1) or D8 but has a subgroup
H isomorphic to M(m,1), where m ≥ 3 when p = 2.

By Lemma 2.4 and Lemma 4.2, we still have G = H ∗CG(H), where CG(H)
is a Dedekind group or a group listed in Theorem 2.3. If the latter happens,
we may assume G = M1 ∗M2, Mi = 〈ai, bi

∣∣ apmi

i = bp
i = 1, ab

i = a1+pmi−1

i 〉,
i = 1, 2, m1 ≤ m2, where M1 = H and M2 = CG(H). Suppose ap

1 = asp
2 .

Letting a3 = a1a
−s
2 , we have ap

3 = 1, 〈a3, b1〉 ∼= M(1,1,1), a contradiction. Thus
CG(H) is a Dedekind group. If CG(H) ∼= Q8 × Ck

2 , then G has a subgroup
isomorphic to M(m,1) ∗Q8. By Proposition 2.8, G has a subgroup isomorphic
to D8, a contradiction. Therefore CG(H) is abelian. By an argument similar
to that of Case 1, we have G ∼= (M(m,1) ∗ Cpn)× Ck

p , where n ≥ 1 and k ≤ 1.
If Cpn ≤ M(m,1), we get the group of type (ix).
If Cpn �M(m,1), then M(m,1) ∗Cpn has a nonnormal subgroup of order ≥ p2

by Theorem 2.3. Hence k = 0 and G ∼= M(m,1) ∗ Cpn . By Proposition 2.7, we
get a group of type (ix) when m > n and get a group of type (x) when m ≤ n.

Conversely, the groups of type (ix) and type (x) for n ≥ 2 satisfy the hy-
pothesis of Case 2.
Case 3. G has no subgroup isomorphic to M(1,1,1) or M(m,1) but has a sub-
group H isomorphic to M(2,1,1).
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By Lemma 2.4, G = H ∗ CG(H). Assume H = 〈a, b | ap2
= bp = cp =

1, [a, b] = c, [c, a] = [c, b] = 1〉 and N ≤ CG(H). If |N | ≥ p2, then |〈b〉N | ≥ p3,
and hence 〈b〉N E G. By the Proposition 2.6, G′ ≤ 〈b〉N ∩ CG(H) = N and
hence N E G. If |N | = p, we claim that N ≤ Z(G). Otherwise, |〈a〉N | ≥ p3,
and hence 〈a〉N E G. By the Proposition 2.6, G′ ≤ 〈a〉N ∩ CG(H) = 〈ap〉N .
Since |N | = p and G′∩〈a〉 = 1, we have N ≤ 〈ap〉G′ ≤ Z(G), a contradiction.
Hence CG(H) is a Dedekind group.

If CG(H) is abelian, then for any element x of order p in CG(H), x ∈ Z(G)
by the same argument as that in the above paragraph. Since M(2,1,1)×Cp has
a nonnormal subgroup of order p3, we have x ∈ H. Hence for any element y
in CG(H) \H, we have o(y) > p and G′ ≤ 〈y〉 by the argument in the above
paragraph. Thus we have G = H ∗ Cpn . If n ≥ 2, then G has a subgroup
isomorphic to M(m,1) by Proposition 2.7. This contradicts our hypothesis.
Thus we get a group of type (x), where n = 1.

If CG(H) ∼= Q8 × Ck
2 , it is easy to see Ck

2 ≤ H and we get a group of type
(xi).

Conversely, the groups of type (x) for n = 1 and type (xi) satisfy the hy-
pothesis of Case 3.
Case 4. G has no subgroup isomorphic to M(m,1) or M(2,1,1) but has a sub-
group H isomorphic to Q8.

By Lemma 2.4, G = H ∗ CG(H). Since G is not Dedekindian, we get
exp(CG(H)) ≥ 4. Thus for any element x of order ≥ 4 in CG(H) \H, we have
H ∩ 〈x〉 = 1 by Proposition 2.8. Hence G ∼= Q8 × A, where A is abelian. It is
easy to see A must be C4, we get a group of type (xii).

Conversely, the group of type (xii) satisfy the hypothesis of Case 4.
Case 5. All inner abelian subgroups in G are isomorphic to M(m,2).

By Lemma 2.4, G = H ∗ CG(H). Assume H = 〈a, b
∣∣ apm

= bp2
= 1, ab =

a1+pm−1〉. If there is an element x not contained in H, then |〈b, x〉| ≥ p3, and
hence 〈b, x〉EG. By Proposition 2.6, G′ ≤ 〈b, x〉 ∩ CG(H) = 〈bp, x〉. It means
that there are integers s, t such that apm−1

= bspxtp. If p - s, 〈a, bsxt〉 is an
inner abelian group which has a cyclic maximal subgroup 〈a〉, this is contrary to
our hypothesis. Hence G′ ≤ 〈x〉. Assume apm−i

= xkpn−i

, where (k, p) = 1 and
|〈a〉 ∩ 〈x〉| = pi, i ≥ 1. If m ≤ n, 〈ax−kpn−m

, b〉 ∼= M(m−i,2,1), a contradiction.
If m > n, 〈apm−n

x−k, b〉 is a nonnormal subgroup of order pm+2−i ≥ p3, we get
a contradiction again. Thus CG(H) ≤ H, we get a group of type (xiii).

Conversely, the group of type (xiii) satisfy the hypothesis of Case 5.

(⇐) We prove that the groups listed in Theorem 4.3 are not isomorphic to
each other.

Obviously, it remains to prove the groups appear in Case 1 are not isomor-
phic to each other. Note that d(G) = 6 for a group (v) but d(G) ≤ 5 for others.
Since groups (iii), (iv), (vi) and (viii) are 2-groups, and groups (i), (ii), and
(vii) are not 2-groups, we discuss these two cases separately.
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For groups (i), (ii) and (vii), Z(G) is cyclic for groups (i) and (ii) but not
cyclic for a group (vii). For a group (i), d(G) = 4 and exp(G) > p but for a
group (ii), d(G) = 5 or d(G) = 4 and exp(G) = p. Hence groups (i), (ii) and
(vii) are not isomorphic to each other.

For groups (iii), (iv), (vi) and (viii), Z(G) is cyclic for groups (iii) and (iv)
but not cyclic for groups (vi) and (viii). If groups (vi) and (viii) have the same
order, then n = 3, exp(G) = 8 for a group (viii) but exp(G) = 4 for a group
(vi). If groups (iii) and (iv) have the same order, then d(G) = 4 for a group
(iii) but d(G) = 5 for a group (iv). Hence groups (iii), (iv), (vi) and (viii) are
not isomorphic to each other.

Finally, we prove groups (i)–(xiii) satisfy the hypothesis of Theorem 4.3.
It is easy to see that |G′| = p for the groups (i)–(xiii). By Theorem 2.3,

there is a subgroup of order ≥ p2 which is nonnormal for the groups (i)–(xiii).
Assume N ≤ G, |N | ≥ p3, we will prove that N E G for the groups (i)–(xiii).
If N 6 G, then:

(I) For groups (i)–(ix), f1(G) is cyclic, and G′ ≤ f(G) when f1(G) 6= 1.
Since N 6 G, G′ � N . Thus N ′ = 1 and f1(N) = 1. Hence N is elementary
abelian. It is easy to check that all elementary abelian subgroups of G not
containing G′ are of order ≤ p2, a contradiction.

(II) For groups (x) and (xiii), there is a cyclic subgroup C of G such that
G′ ≤ C ≤ Z(G) and |G : C| = p3. Since N 6 G, G′ � N . We have N ∩C = 1.
Hence NC = G, N EG, a contradiction.

(III) For groups (xi) and (xii), noting that exp(G) = 4 = |Ø1(G)|, we always
have N ≥ Ø1(G) ≥ G′ since |N | ≥ p3. A contradiction. �
Lemma 4.4. Assume |G′| = p2. If K ≤ G′∩Z(G), |K| = p, G/K ∼= D8 ∗C2n ,
M(1,1,1) ∗Cpn or D8 ∗Q8 where n ≥ 2, then G′ ∼= C2

p , n = 2, exp(G) = p2 and
G′ ≤ Z(G).

Proof. By Proposition 2.7, we can take H ≤ G such that H = HK/K ∼= M(2,1)

when G = G/K ∼= M(1,1,1) ∗ Cpn . On the other hand, it is easy to see we can
take H such that H ∼= Q8 when G ∼= D8 ∗ C2n or D8 ∗ Q8. If G′ is cyclic, it
follows from H

′
= G

′
that H ′ = G′. Thus H is a group of order p4, H ′ ∼= Cp2

and H/f1(H ′) ∼= M(2,1) or Q8. By the classification of groups of order p4, such
group does not exist, hence G′ ∼= C2

p .
If G ∼= D8 ∗C2n or M(1,1,1) ∗Cpn , we claim that n = 2. Taking Z ≤ G such

that Z/K = Z(G), we have Z = K×C since Z(G) is cyclic and G′ ≤ Z, where
C ∼= C2n or Cpn respectively. If n ≥ 3, then G′ � C EG. Hence C ≤ Z(G) by
Proposition 2.6. Now |G : Z(G)| ≤ |G : Z| = 4 or p2 respectively. It follows
that |G′| ≤ p, a contradiction.

Now we always have f1(G)K/K = f1(G/K) = (G/K)′ = G′/K ′. Hence
f1(G) ≤ G′, exp(G) = p2.

Finally, we prove that G′ ≤ Z(G). If G/K ∼= D8 ∗ C4 or M(1,1,1) ∗ Cp2 ,
then G/K = 〈ā, b̄, c̄

∣∣ āp2
= b̄p = c̄p = 1̄, [ā, b̄] = [ā, c̄] = 1̄, [b̄, c̄] = āp〉. Thus
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G = 〈a, b, c〉 and G′ = 〈ap〉 ×K. Since [a, b] ∈ K ≤ Z(G), [ap, b] = [a, b]p = 1.
Similarly, [ap, c] = 1. Hence G′ ≤ Z(G). If G/K ∼= D8 ∗ Q8, then G/K =
〈ā, b̄, c̄, d̄

∣∣ ā4 = c̄2 = d̄2 = 1̄, ā2 = b̄2 = [ā, b̄] = [c̄, d̄], [ā, c̄] = [ā, d̄] = [b̄, c̄] =
[b̄, d̄] = 1̄〉. It follows that [a2, c] = [a2, d] = [b2, c] = [b2, d] = 1, and hence
G′ = 〈a2〉 ×K = 〈b2〉 ×K ≤ Z(G). �

Theorem 4.5. Assume |G′| = p2. Then G is one of the following non-
isomorphic groups:

(i) G is a p-group of maximal class of order p4;
(ii) G = 〈a, b, c

∣∣ a4 = b4 = c2 = 1, [a, b] = 1, [a, c] = b2, [b, c] = a2b2〉;
(iii) G = 〈a, b, c

∣∣ a4 = b4 = 1, c2 = b2, [a, b] = 1, [a, c] = b2, [b, c] = a2〉;
(iv) G = 〈a, b, c

∣∣ ap2
= bp2

= cp = 1, [a, b] = 1, [a, c] = bp, [b, c] = apbwp〉,
where w = 1, 2, . . . , p−1

2 and 1 + w2

4 is not a square modulo p;
(v) G = 〈a, b, c

∣∣ ap2
= bp2

= cp = 1, [a, b] = 1, [a, c] = bνp, [b, c] = apbwp〉,
where ν is a non-square residue modulo p, w = 0, 1, . . . , p−1

2 and ν + w2

4 is not
a square modulo p;

(vi) G = 〈a, b, c, d
∣∣ a4 = b4 = 1, c2 = a2b2, d2 = a2, [a, b] = a2, [c, d] =

a2b2, [a, c] = [b, d] = 1, [b, c] = [a, d] = b2〉.
Proof. (⇒) By hypothesis, |G| ≥ p4. If |G| = p4, by the classification of groups
of order p4, G is a p-group of maximal class, we get the group of type (i).
Assume |G| ≥ p5. By Lemmas 2.2 and 2.3, there exists K E G such that
|G′ : K| = p and G/K is isomorphic to one of the groups M(m,1), D8 ∗ C2n ,
M(1,1,1) ∗ Cpn and D8 ∗ Q8, where m ≥ 3 and n ≥ 2. By Lemma 4.4, n = 2.
We proceed in the following four cases.

Case 1. G/K ∼= M(m,1) = 〈ā, b̄
∣∣ āpm

= b̄p = 1̄, [ā, b̄] = āpm−1〉.
Since K ≤ G′, G = 〈a, b〉. Moreover, o(a) ≥ p3 since m ≥ 3. Then 〈a〉 E G.

It follows that G is metacyclic and has a cyclic subgroup 〈a〉 of index p. By [4,
I, Satz 14.9], there is no such group with |G| ≥ p5 and |G′| = p2.

Case 2. G/K ∼= D8 ∗ C4 = 〈ā, b̄, c̄
∣∣ ā4 = b̄2 = c̄2 = 1̄, [b̄, c̄] = ā2, [ā, b̄] =

[ā, c̄] = 1̄〉.
Since K ≤ G′, G = 〈a, b, c〉. By Lemma 4.4, exp(G) = 4, G′ = 〈a2〉 ×K ≤

Z(G). Noting that |〈b, c〉| ≥ 8, we have 〈b, c〉EG. Since G = 〈b, c〉〈a〉, |〈b, c〉| ≥
16. Without loss of generality we can assume o(b) = 4. Hence K = 〈b2〉. Thus
we have

G = 〈a, b, c
∣∣ a4 = b4 = 1, c2 = b2v, [b, c] = a2b2k, [a, b] = b2s, [a, c] = b2t〉,

where k, v, s, t are 0 or 1, and either s 6= 1 or t 6= 1.
If v = 0, then 〈a, c〉 E G, b2 = [a, b] or [a, c]. It follows that b2 ∈ 〈a, c〉,

and hence [a, c] 6= 1, that is, t = 1. By calculations, we get |〈ab, c〉| ≥ 8.
Hence 〈ab, c〉 E G. It is easy to see G′ ≤ 〈ab, c〉. Since G′ ≤ Z(G), we
have [ab, c] 6= (ab)2. By calculations, we get s 6= k. If s = 0, then k = 1,
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we get a group of type (ii). If s = 1, then k = 0. Let b1 = abc. Then
b2
1 = b2, [a, b1] = 1, [b1, c] = a2b2. So G is isomorphic to the group of type (ii).

Assume v = 1. If t = 0, then s = 1. If k = 1, letting c′ = abc, then c′2 = 1.
It is reduced to the case in the above paragraph. So we may assume k = 0.
Letting b1 = c, c1 = b, we get a group of type (iii). If s = 0, by an argument
similar to that in the case t = 0, we still get a group of type (iii). If s = t = 1,
letting c1 = abc, then c1

2 = 1 and [a, c1] = 1. It is reduced to the cases we
discussed.

Case 3. G/K ∼= M(1,1,1) ∗ Cp2 = 〈ā, b̄, c̄
∣∣ āp2

= b̄p = c̄p = 1, [ā, b̄] = [ā, c̄] =
1̄, [b̄, c̄] = āp〉.

By Lemma 4.4, we have exp(G) = p2, G′ = 〈ap〉 ×K ≤ Z(G). Since p > 2,
G is p-abelian. By an argument similar to that in Case 2, we can assume that

G = 〈a, b, c
∣∣ ap2

= bp2
= 1, cp = bkp, [a, b] = bsp, [a, c] = btp, [b, c] = apbwp〉,

where 0 ≤ k, s, t, w < p.
Replacing c by cb−k, we may assume k = 0. It follows from 〈a, c〉EG that

G′ ≤ 〈a, c〉, and hence t 6= 0. Replacing b by c−isb, where it ≡ 1 (mod p), we
have s = 0.

If t ≡ i2 (mod p) for some i, replacing a by aj and c by cj , where ij ≡
1 (mod p), we have t = 1. Replacing a by a−1 and c by c−1, we have [b, c] =
apb(p−w)p. Thus we can assume w ≤ p−1

2 without loss of generality. Now we
claim that 1 + w2

4 is not a square modulo p. Assume 1 + w2

4 ≡ i2 (mod p)
for some i. Write j = i − w

2 and let H = 〈ajb, cj〉. Then H is a nonnormal
subgroup of order p3, this is contrary to our hypothesis. We get a group of
type (iv).

If t is not a square modulo p, taking a fixed number ν which is a non-square
residue modulo p, then there exists i such that t = i2ν. Replacing a by aj and
c by cj , where ij ≡ 1 (mod p), we have t = ν. By an argument similar to that
in the above paragraph, we get a group of type (v).

Case 4. G/K ∼= D8 ∗ Q8 = 〈ā, b̄, c̄, d̄
∣∣ ā4 = b̄2 = 1̄, [ā, b̄] = ā2, c̄2 = d̄2 =

ā2, [c̄, d̄] = ā2, [ā, c̄] = [ā, d̄] = [b̄, c̄] = [b̄, d̄] = 1̄〉.
Since K ≤ G′, G = 〈a, b, c, d〉. By Lemma 4.4, exp(G) = 4, G′ = 〈a2〉×K ≤

Z(G).
Suppose that H/K = H ≤ G = G/K. We have the following observation.
If H = 〈x̄, ȳ

∣∣ x̄4 = ȳ2 = 1, x̄ȳ = x̄−1〉 ∼= D8, then o(y) = 4, and hence
H ∼= M(2,2).

In fact, by Lemma 2.4, G = H ∗CG(H), we can assume x = a, y = b. Noting
that C〈c,d〉(b) 6= 1, we may assume [b, c] = 1 without loss of generality. By
hypothesis, 〈b, c〉EG and 〈a, b〉EG. If b2 = 1, then [〈b, c〉, 〈a, d〉] ≤ 〈b, c〉∩G′ =
〈c2〉 and [〈a, b〉, 〈c, d〉] ≤ K ∩ 〈a, b〉 = 1. Hence G′ = 〈c2〉, this is contrary
to |G′| = p2. Thus o(b) = 4, K = 〈b2〉. Moreover, 〈ā, ab〉 ∼= D8, and hence
(ab)2 = a2b2[a, b] 6= 1. We have [a, b] = a2, H ∼= M(2,2).
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Noting that C〈c,d〉(a) 6= 1, we may assume [a, c] = 1 without loss of gen-
erality. Let H1 = 〈ca, d̄〉 ∼= D8. By the observation above, we have (ca)2 =
c2a2[a, c] = c2a2 6= 1, and hence c2 = a2b2. Moreover, d2 = [ca, d] = [c, d][a, d],
it follows that [c, d] = d2[a, d]. Let H2 = 〈da, c̄〉 ∼= D8. In the same way, we
have (da)2 = d2a2[a, d] 6= 1, d2[a, d] = a2b2. Hence [c, d] = c2 = a2b2.

If d2 = c2, then [〈b〉, 〈c, d〉] ≤ 〈c, d〉 ∩ K = 1, (bc)2 = b2c2 = a2. [d, c] =
[d, bc] ∈ 〈a, bc〉 ∩ G′ = 〈a2〉, contradicting the fact that [c, d] = a2b2. Hence
d2 = a2. It follows that [a, d] = d2[c, d] = b2.

If [b, c] = 1, then [a, d] ∈ 〈a, bc〉∩G′ = 〈a2〉, contradicting the fact [a, d] = b2.
Hence [b, c] = b2.

Finally, if [b, d] = b2, letting d1 = cd, then d2
1 = d2, [a, d1] = [a, d], [c, d1] =

[c, d] and [b, d1] = 1. Thus we can assume [b, d] = 1 and get a group of type
(vi).

(⇐) We prove that those groups listed in Theorem 4.5 are not isomorphic
to each other. It suffices to show that the groups of type (ii), (iii), (iv) and (v)
are not isomorphic to each other.

For groups (ii) and (iii), their order are 25. To prove that these two groups
are not isomorphic, we observe the following facts: (1) both of groups (ii) and
(iii) have a maximal subgroup H which isomorphic to C4 × C4, and (2) there
is an involution in G \H for a group (ii) but not for a group (iii).

For the groups (iv) and (v), their order are p5(p > 2).
Firstly, we prove that these groups of the same type but with different values

of parameters are not isomorphic to each other.
It is easy to see Z(G) = G′ and hence 〈a, b〉 is the unique abelian maximal

subgroup.
For groups of type (iv), suppose the group with parameter w1 is isomorphic

to the group with parameter w2. Since 〈a, b〉 char G, we may assume a2 =
ai1
1 bj1

1 , b2 = ai2
1 bj2

1 and c2 = ai3
1 bj3

1 ck
1 satisfying ap2

i = bp2

i = cp
i = 1, [ai, bi] = 1,

[ai, ci] = bp
i and [bi, ci] = ap

i b
wip
i , where i = 1, 2, | i1 j1

i2 j2
|6≡ 0 (mod p) and p - k.

Since (ai2
1 bj2

1 )p = bp
2 = [a2, c2] = [ai1

1 bj1
1 , ai3

1 bj3
1 ck

1 ], we have (1) j1k ≡ i2 (mod p),
(2) i1k + w1j1k ≡ j2 (mod p); since (ai1

1 bj1
1 )p(ai2

1 bj2
1 )w2p = ap

2b
w2p
2 = [b2, c2] =

[ai2
1 bj2

1 , ai3
1 bj3

1 ck
1 ], we have (3) j2k ≡ i1 + w2i2 (mod p), (4) i2k + w1j2k ≡

j1 + w2j2 (mod p).
By (1) and (4), we have j1(k2 − 1) + j2(kw1 − w2) ≡ 0 (mod p); by (1), (2)

and (3), we have i1(k2− 1) + i2(kw1−w2) ≡ 0 (mod p). Since | i1 j1
i2 j2

|6≡ 0 (mod
p), we have k2 − 1 ≡ 0 (mod p), kw1 − w2 ≡ 0 (mod p). Since 1 ≤ wi ≤ p−1

2 ,
w1 = w2.

Similarly, groups of type (v) with different values of parameters are not
isomorphic to each other.

Secondly, we prove that a group (iv) is not isomorphic to a group (v). Sup-
pose the group (iv) with parameter w1 is isomorphic to the group (v) with
parameter w2. We may assume a2 = ai1

1 bj1
1 , b2 = ai2

1 bj2
1 and c2 = ai3

1 bj3
1 ck

1
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satisfying ap2

i = bp2

i = cp
i = 1, [ai, bi] = 1, [a1, c1] = bp

1, [a2, c2] = bνp
2

and [bi, ci] = ap
i b

wip
i , where i = 1, 2, | i1 j1

i2 j2
|6≡ 0 (mod p) and p - k. By a

similar calculation, we have j1(k2ν−1 − 1) + j2(kw1 − w2) ≡ 0 (mod p) and
i1(k2ν−1 − 1) + i2(kw1 − w2) ≡ 0 (mod p). Hence ν ≡ k2, a contradiction.

Finally, we prove that the groups (i)–(vi) satisfy the hypothesis of Theo-
rem 4.5.

For groups (i)–(vi), it is easy to see that |G′| = p2.
For the group (i), it is easy to see that it satisfies the hypothesis of Theo-

rem 4.5.
For groups (ii), (iii), (iv) and (v), |G| = p5.
We prove that for any subgroup K of G′ of order p, G = G/K is a Dedekind

group or a group listed in Theorem 2.3. It is easy to check that G ∼= D8 ∗ C4

for group (ii), G ∼= D8 ∗C4 or Q8 ×C2 for group (iii). For groups (iv) and (v),
we already know that G/〈bp〉 ∼= M(1,1,1) ∗Cp2 , so we assume K = 〈apbxp〉. Let
M = 〈āb̄x, c̄〉. Note (āb̄x)p = c̄p = 1̄, [āb̄x, c̄] = b̄p(νi−x2+xw), where i = 0 for
group (iv) and i = 1 for group (v). Since νi − x2 + xw = νi + w

4 − (x− w
2 )2 6≡

0 (mod p), M ∼= M(1,1,1). Noting |G′| = p and exp(G) = p2, by Lemma 2.4,
G ∼= M(1,1,1) ∗ Cp2 .

Now it suffices to prove all subgroups of order p3 are normal. Assume H ≤ G,
|H| = p3 and H 6 G. Then G′ � H. Note G′ = Z(G) is of order p2. If
H ∩ G′ = 1, then G = G′ ×H, this contradicts H 6 G. Hence |H ∩ G′| = p.
Thus G/H ∩ G′ is a Dedekind group or a group listed in Theorem 2.3. So
H/H ∩G′ EG/H ∩G′, and hence H EG, a contradiction.

For the group (vi), by calculations, we have the following facts: Ω1(G) =
Z(G) = G′ = 〈a2〉 × 〈b2〉. Let H be a nonnormal subgroup of G. Then
|H ∩G′| ≤ 2. Since H ∩Ø1(G) = Ø1(H), H has a unique element of order 2. It
follows that H is either a cyclic group or a quaternion group. If |H| ≥ 8, then
H is a quaternion group. Taking K ≤ G′ and K 6= H ′, and letting G = G/K.
Since H = HK/K ∼= Q8 and |G′| = 2, G = H ∗ CG(H) by Lemma 2.4. Let
C/K = CG(H). Then G = HC, H ∩ C = H ′. Hence G/H ′ has an elementary
abelian subgroup of order 8. But one can easily check that G/K ∼= D8 ∗Q8 for
any 1 < K < G′ and D8 ∗Q8 has no elementary abelian subgroup of order 8,
a contradiction. �

Remark 4.6. The group of type (vi) in Theorem 4.5 is the same as the group of
type (1) in [8, Proposition 10 ]. In fact, for (vi), let a1 = b, b1 = a, c1 = c and
d1 = bd. Then (vi) is reduced to (1) by an easy calculation. By [8, Remark]
this means the group (vi) is an M2-group and MI-group. (An M2-group is a
p-group all of whose subgroups of index p2 are metacyclic, but there is at least
one subgroup of index p is not; An MI-group is a group all of whose maximal
subgroups are isomorphic.)

Summarizing, we have the following:
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Theorem 4.7. Let G be a finite p-group. Then all subgroups of G of order
≥ p3 are normal if and only if G is either a Dedekind group, or a group listed
in Theorems 2.3, 4.3, and 4.5.
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