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THE SEPARABLE QUOTIENT PROBLEM
FOR (LF )tv-SPACES

WiesÃlaw Śliwa

Abstract. In 1981 S. A. Saxon and P. P. Narayanaswami ([10]) showed
that every (LF )-space has an infinite dimensional separable quotient.
In this note we prove that this fails for (LF )tv-spaces. We construct a
wide class of (LF )tv-spaces, which have no infinite dimensional separable
quotient.

Introduction

One of the famous unsolved problems of functional analysis is whether every
infinite dimensional (i.d.) Banach space E has an i.d. separable quotient, i.e.,
whether it has a closed subspace M such that the quotient space E/M is i.d.
and separable. Likely this problem has been posed by S. Mazur in 1932.

It is known that every i.d. reflexive Banach space, or even every i.d. weakly
compactly generated Banach space, has an i.d. separable quotient ([14], Sec-
tion 15-3, Corollary 7). H. P. Rosenthal ([9]) and independently E. Lacey ([5])
proved that the Banach space C(S) of all continuous scalar-valued functions
defined on an infinite compact Hausdorff space S has an i.d. separable quotient.

In 1936 M. Eidelheit ([2]) showed that every non-normable Fréchet space
(i.e., metrizable complete locally convex space) has a quotient isomorphic to
KN, where K denotes the field of real or complex scalars, and so it has an
i.d. separable quotient. In 1981 S. A. Saxon and P. P. Narayanaswami ([10],
Theorem 3) proved that every (LF )-space (i.e., the inductive limit of a strictly
increasing sequence of Fréchet spaces) possesses an i.d. separable quotient.

For F -spaces (i.e., metrizable complete topological vector spaces) the sepa-
rable quotient problem has been solved negatively in 1984 by Popov ([8]). He
showed that for every atomless finite measure space (Ω, Σ, µ) with dim L1(Ω) >
c there exists a subset Ω1 of Ω with µ(Ω1) > 0 such that the space Lp(Ω1),
0 < p < 1, has no i.d. separable quotient. In [12] we proved that for every mea-
sure space (Ω, Σ, µ) and every Orlicz function φ the Orlicz space Lφ(Ω) has an
i.d. separable quotient if and only if limu→∞ inf φ(u)u−1 = 0 and ω(Ω) = ℵ0
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or limu→∞ inf φ(u)u−1 > 0 and d(Ω) ≥ ℵ0 (see [12], Theorems 1.3, 3.2, 3.3
and Corollary 3.1). In particular, the space Lp([0, 1]c), 0 < p < 1, has no i.d.
separable quotient (see [7], Corollary 8.3).

In this paper we prove that there exist metrizable (LF )tv-spaces which have
no i.d. separable quotient. In order to show this, we prove that every i.d.
Orlicz space contains a dense (LF )tv-subspace. We also prove that there exist
strict (LF )tv-spaces which have no i.d. separable quotient.

Preliminaries

Let (E, τ) be a Hausdorff topological vector space (tvs). A quotient of (E, τ)
is a tvs (E/M, τ/M), where M is a closed subspace of (E, τ) and τ/M is the
quotient topology on E/M . If G is a subspace of (E, τ), τ |G denotes the
relative topology on G. By F(τ) we shall mean the family of all balanced
neighbourhoods of zero in (E, τ). A sequence (Un) of balanced and absorbing
subsets of E such that Un+1 + Un+1 ⊂ Un for all n ∈ N is called a string in
(E, τ). A string (Un) in (E, τ) is closed if every Un is closed in (E, τ) and
topological if (Un) ⊂ F(τ).

A tvs (E, τ) is ultrabarrelled (barrelled in [1]) if every closed string in (E, τ) is
topological. A quotient of an ultrabarrelled tvs is ultrabarrelled ([1], Section 6).

We will use the following open mapping theorem ([1], Section 9):
A continuous linear mapping from an F -space onto an ultrabarrelled tvs is

open.
The dual of a tvs (E, τ), i.e., the vector space of all continuous linear func-

tionals on (E, τ) will be denoted by (E, τ)∗; it will be called total if for every
x ∈ (E \ {0}) there exists f ∈ (E, τ)∗ with f(x) 6= 0. A subspace G of (E, τ) is
weakly closed, i.e., closed in the weak topology of (E, τ) if and only if for every
x ∈ (E \ G) there exists f ∈ (E, τ)∗ such that f(G) = {0} and f(x) 6= 0 (see
[3], Section 7.3, Corollary 6).

In [4] (see Proposition 1) we proved the following.

Theorem A. A tvs (E, τ) has an i.d. separable quotient with the total dual
if and only if there exists a strictly increasing sequence (En) of weakly closed
subspaces of (E, τ) whose union is dense in (E, τ).

Let (E, τ) be a tvs. If there exists a strictly increasing sequence {(En, τn) :
n ∈ N} of F -spaces such that E =

⋃∞
n=1 En, τn+1|En ⊂ τn for each n ∈ N and

τ is the finest vector topology with τ |En ⊂ τn for each n ∈ N, then (E, τ) is
said to be an (LF )tv-space with a defining sequence {(En, τn) : n ∈ N}. Then
we write (E, τ) = lim−→(En, τn).

If (E, τ) = lim−→(En, τn) is an (LF )tv-space, then a string (Un) in (E, τ) is
topological if and only if Un ∩ En ∈ F(τn) for every n ∈ N.

F -spaces and (LF )tv-spaces are ultrabarrelled ([1], Section 6). By Baire
theorem and the open mapping theorem no (LF )tv-space is an F -space.

We say that an (LF )tv-space (E, τ) = lim−→(En, τn) is strict if τn+1|En = τn

for each n ∈ N; then we have τ |En = τn for any n ∈ N ([3], Section 4.6,
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Theorem 1). If {(En, τn) : n ∈ N} is a strictly increasing sequence of F -spaces
with τn+1|En

= τn for every n ∈ N, then there exists the finest Hausdorff
vector topology τ0 on E0 =

⋃∞
n=1 En such that τ0|En

= τn for all n ∈ N ([3],
Section 4.6, Theorem 1); clearly, (E0, τ0) = lim−→(Enτn) and (E0, τ0) is a strict
(LF )tv-space. Strict (LF )tv-spaces are complete ([3], Section 4.6, Theorem 1)
and non-metrizable.

A tvs (G, γ) is said to be continuously included in a tvs (E, τ) provided
G ⊂ E and τ |G ⊂ γ. We say that a tvs (E, τ) is dominated by a tvs (E, γ) if
τ ⊂ γ.
A sequence (Pn) of projections on a vector space E is orthogonal if Pn(Pm(x))
= 0 for all n,m ∈ N with n 6= m, and x ∈ E.

A function φ : [0,∞) → [0,∞) we will call an Orlicz function if
(01) φ is nondecreasing and continuous at u = 0;
(02) φ(u) = 0 if and only if u = 0;
(03) φ(2u) ≤ Cφ(u) for some constant C and for all u ≥ 0.

(The condition (03) is known as condition ∆2.)
By Φ0 and Φ1 we denote the set of all Orlicz functions such that

lim inf
u→∞

φ(u)u−1 = 0

and
lim inf
u→∞

φ(u)u−1 > 0,

respectively.
Clearly, the set Φ = Φ0 ∪ Φ1 contains all Orlicz functions.
Let (Ω, Σ, µ) be a measure space and let L0(Ω) denote the vector space of

all (µ-equivalence classes of) scalar valued and measurable functions on Ω. Let
φ ∈ Φ. Put

mφ(f) =
∫

Ω

φ(|f(t)|)dµ for f ∈ L0(Ω) ,

Lφ(Ω) = {f ∈ L0(Ω) : mφ(f) < ∞}, and

‖f‖φ = inf{s > 0 : mφ(s−1f) < s} for f ∈ Lφ(Ω) .

The functional ‖ · ‖φ on the vector space Lφ(Ω) is a complete and absolutely
continuous F -norm (i.e., for every f ∈ Lφ(Ω) and every decreasing sequence
(Ωn) ⊂ Σ such that µ(A ∩ Ωn) → 0 for each A ∈ Σ with µ(A) < ∞ we have
‖fχΩn‖φ → 0, where χΩn denotes the characteristic function of the set Ωn).
The F -space (Lφ(Ω), ‖ · ‖φ) is a symmetric function space (see [12]) and it is
called an Orlicz space.

For every p ∈ (0,∞) the function φp : [0,∞) → [0,∞), u → up is an Orlicz
function; the Orlicz space corresponding with φp we denote by Lp(Ω). For
0 < p < 1 (1 ≤ p < ∞) the functional

‖f‖p =
∫

Ω

|f(t)|pdµ

(
‖f‖p =

(∫

Ω

|f(t)|pdµ

)1/p
)

for f ∈ Lp(Ω),
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is an F -norm on Lp(Ω) which is equivalent to ‖ · ‖φp
. Clearly, φp ∈ Φ0 for

0 < p < 1, and φp ∈ Φ1 for 1 ≤ p < ∞.
Let A ∈ Σ. Put ΣA = {B ∈ Σ : B ⊂ A}, Σ∗A = {B ∈ ΣA : µ(B) < ∞},

Σ+
A = {B ∈ ΣA : 0 < µ(B) < ∞}, µA = µ|ΣA

and Σ+ = Σ+
Ω . Consider the

following equivalence relation ∼A on Σ∗A: B ∼A C if and only if µ(B M C) = 0.
The function

mA : (Σ∗A/ ∼A)× (Σ∗A/ ∼A) → [0,∞), ([B], [C]) → µ(B M C)

is a metric in (Σ∗A/ ∼A). Put d(A) = dens((Σ∗A/ ∼A),mA). Let

w(A) = inf{d(B) : B ∈ Σ+
A and d(B) ≥ ℵ0} if d(A) ≥ ℵ0.

It is easy to see that for every measure space (Ω, Σ, µ) with {0, 1}  µ(Σ) ⊂
[0, 1] and every cardinal number α > ℵ0 we have w(Ωα) ≥ α, where (Ωα,Σα, µα)
is the product measure space (Ω, Σ, µ)α.

Let Lφ
Ω(A) = {f ∈ Lφ(Ω) : f = f · χA} for A ∈ Σ. The set {χB : B ∈ Σ∗A}

is linearly dense in Lφ
Ω(A) for A ∈ Σ. If d(A) ≥ ℵ0, then densLφ

Ω = d(A).
In [12] (see Theorems 1.3, 1.6, and 1.10) we proved the following.

Theorem B. Let (Ω, Σ, µ) be a measure space and let φ ∈ Φ0. Then Lφ(Ω)
has an i.d. separable quotient if and only if there exists A ∈ Σ such that Lφ

Ω is
i.d. and separable.

Theorem C. Let (Ω, Σ, µ) be a measure space with a σ-finite measure µ. Then
there exists A ∈ Σ such that for every φ ∈ Φ0 the subspace Lφ

Ω(A) is separable
and the subspace Lφ

Ω(Ω \A) has no i.d. separable quotient.

Theorem D. Let (Ω, Σ, µ) be a measure space with a σ-finite measure µ and
let φ ∈ Φ0. Then for every closed subspace X of Lφ(Ω) there exists A ∈ Σ with
dim(Lφ(Ω)/X) = dim Lφ

Ω(A).

1. Results

First we prove that there exist metrizable (LF )tv-spaces, which have no i.d.
separable quotient. We shall need the following non locally convex variant of
Theorem 4 of [11].

Lemma 1. Assume that an F -space (E, γ) possesses an orthogonal sequence
of continuous projections (Pn) such that for every n ∈ N the space (Pn(E),
γ|Pn(E)) contains a proper dense subspace (Gn, γ|Gn) dominated by an F -space
(Gn, τn). Then E0 =

⋃∞
k=1

⋂∞
n=k P−1

n (Gn) is a dense subspace of (E, γ) and
(E0, γ|E0) is an (LF )tv-space. If the series Σ∞n=1Pnx is convergent in (E, γ)
for every x ∈ E0 and the space (Gn, τn) has the total dual for every n ∈ N, then
the (LF )tv-space (E0, γ|E0) has a defining sequence each of whose members has
an i.d. separable quotient with the total dual.
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Proof. Put Ek =
⋂∞

n=k P−1
n (Gn), k ∈ N. Then

⋃∞
k=1 Ek = E0 and Ek  Ek+1,

k ∈ N. We show that E1 is a dense subspace of (E, γ). Let (Uk) be a base of
neighbourhoods of zero in (E, γ) such that Uk+1+Uk+1 ⊂ Uk, k ∈ N. Let x ∈ E,
m ∈ N and xk ∈ Gk∩(Pk(x)+Pk(E)∩Um+k+1) for every k ∈ N. Then the series
Σ∞k=1(xk−Pkx) is convergent in (E, γ) and (x+Σ∞k=1(xk−Pkx)) ∈ (x+Um)∩E1.
Hence (x + Um) ∩ E1 6= ∅. Thus E1 is dense in (E, γ).

Let k ∈ N, Fk = E ×∏∞
n=k Gn, αk = γ ×∏∞

n=k τn. Then (Fk, αk) is an F -
space and the linear map Qk : Ek → Fk, x → (x, Pkx, Pk+1x, . . . ) is injective.
Put γk = {Q−1

k (U) : U ∈ αk}. (Ek, γk) is an F -space, since Qk(Ek) is a closed
subspace of (Fk, αk). The sets in the form Ek ∩ U ∩ ⋂m

n=k P−1
n (Vn), where

m ∈ N, m ≥ k, U ∈ F(γ) and Vn ∈ F(τn), compose a base of neighbourhoods
of zero in (Ek, γk). It is obvious that γk+1|Ek

⊂ γk and γ|Ek
⊂ γk. Let γ0 be

the finest vector topology on E0 such that γ0|Ek
⊂ γk for each k ∈ N. Clearly,

γ|E0 ⊂ γ0. We prove that γ0 ⊂ γ|E0 .
First we show that γ0|Ek

⊂ γ|Ek
for k ∈ N. Let k ∈ N and V ∈ F(γ0). Let

V0 ∈ F(γ0) with V0 +V0 ⊂ V . Then Ek ∩V0 ∈ F(γk) and there exist an integer
m ≥ k and sets U0 ∈ F(γ), Vn ∈ F(τn) for k ≤ n ≤ m such that

Ek ∩ U0 ∩
m⋂

n=k

P−1
n (Vn) ⊂ Ek ∩ V0 .

Let l = m + 1. Then El ∩ V0 ∈ F(γl) and there exist an integer t ≥ l and sets
U1 ∈ F(γ), Vn ∈ F(τn) for l ≤ n ≤ t such that

Ek ∩ U1 ∩
t⋂

n=l

P−1
n (Vn) ⊂ El ∩ V0 .

The map P = (Σm
n=kPn)|Ek

is a continuous projection in (Ek, γ|Ek
), since

Pn(Ek) ⊂ Ek for n ≥ k. Thus

(Ek, γ|Ek
) = (kerP, γ|ker P )⊕ (ImP, γ|ImP ) .

Since

U0 ∩ kerP ⊂ Ek ∩ U0 ∩
m⋂

n=k

P−1
n (Vn) ⊂ Ek ∩ V0

and

U1 ∩ ImP ⊂ Ek ∩ U1 ∩
t⋂

n=l

P−1
n (Vn) ⊂ Ek ∩ V0

then
U0 ∩ kerP + U1 ∩ ImP ⊂ Ek ∩ V .

This follows that γ0|Ek
⊂ γ|Ek

for each k ∈ N.
Now we prove that γ0 ⊂ γ|E0 . Let W ∈ F(γ0) and V ∈ F(γ0) with V + V ⊂

W . Then there exists an open set U ∈ F(γ) with U ∩E1 ⊂ V ∩E1. For k ∈ N
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we have

U ∩ Ek ⊂ cl(Ek,γ|Ek
)U ∩ Ek ∩ E1 ⊂ cl(Ek,γ0|Ek

)V ∩ Ek ∩ E1 ⊂ W .

Thus U ∩Ek ⊂ W for k ∈ N, so U ∩E0 ⊂ W . This follows that γ0 ⊂ γ|E0 . We
have shown that γ0 = γ|E0 . Thus (E0, γ|E0) = lim−→(Ek, γk).

Now assume that the series Σ∞n=1Pnx is convergent in (E, γ) for every x ∈ E0

and the space (Gn, τn) has the total dual for every n ∈ N. Let k ∈ N. Put Em
k =

Ek ∩
⋂∞

n=m P−1
n (0) for m ∈ N, m ≥ k. Let x ∈ Ek and xm = x − Σ∞n=mPnx

for m ≥ k. Then xm ∈ Em
k for m ≥ k and Qk(xm) →m→∞ Qkx in (Fk, αk).

Hence xm → x in (Ek, γk). Thus
⋃∞

m=k Em
k is a dense subspace of (Ek, γk).

Let m ∈ N, m ≥ k. Let x ∈ Ek \ P−1
m (0). Then xm+1 ∈ (Em+1

k \ Em
k ), so

Em
k  Em+1

k .
Let x ∈ (Ek \ Em

k ). Then Pnx ∈ Gn for every n ≥ k and Ptx 6= 0 for some
t ≥ m, so there exists ft ∈ (Gt, τt)∗ with ft(Ptx) 6= 0.

Put St : Fk → Gt, (x, xk, xk+1, . . . ) → xt and f = ft ◦ St ◦Qk.
Clearly, f ∈ (Ek, γk)∗, f(Em

k ) = {0} and f(x) 6= 0. Thus Em
k is a weakly

closed subspace of (Ek, γk). By Theorem A, (Ek, γk) has an i.d. separable
quotient with the total dual. �

Remark. The ideas of the construction in Lemma 1 were obtained indepen-
dently by M. Valdivia and P. Pérez Carreras in their paper [13], in which they
proved that every non-normable Fréchet space contains a proper dense sub-
space which is an (LF )-space. More details, examples and comments can be
seen in Sections 8.7, 8.8, and 8.9 of the book [6].

Now we can prove our main result.

Theorem 2. Let (Ω, Σ, µ) be a measure space and let φ ∈ Φ. Assume that
dim Lφ(Ω) = ∞. Then Lφ(Ω) contains a proper dense subspace X such that

(a) X is an (LF )tv-space with a defining sequence each of whose members
has an i.d. separable quotient with the total dual;

(b) X has an i.d. separable quotient if and only if φ ∈ Φ1 or ω(Ω) = ℵ0 .

Proof. We consider three cases.
Case 1: φ ∈ Φ1. Since d(Ω) ≥ ℵ0 then there exists a sequence (Ωn) ⊂ Σ of

pairwise disjoint sets such that d(Ωn) ≥ ℵ0 for n ∈ N.
Let Pn : Lφ(Ω) → Lφ(Ω), f → f ·χΩn for n ∈ N. Then (Pn) is an orthogonal

sequence of continuous projections on Lφ(Ω). Let Xn = Lφ
Ω(Ωn) ∩ L∞(Ω) and

|||f |||n = ‖f‖φ + ‖f‖∞ for f ∈ Xn, n ∈ N. Then Xn is a dense proper
subspace of Pn(Lφ(Ω)) = Lφ

Ω(Ωn), dominated by the F -space (Xn, ||| · |||n)
with the total dual. By Lemma 1 the space X =

⋃∞
k=1

⋂∞
n=k P−1

n (Xn) is a
dense subspace of Lφ(Ω) and it is an (LF )tv-space with a defining sequence
each of whose members has an i.d. separable quotient with the total dual, since
the series Σ∞n=1Pnf is convergent in Lφ(Ω) for every f ∈ Lφ(Ω). Let k ∈ N.
Put Ak = (Ω\⋃∞n=k+1 Ωn), Bk = (Ω\Ak). Then Lφ

Ω(Ak) ⊂ ⋂∞n=k P−1
n (0)  X.
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The quotient space Lφ(Ω)/Lφ
Ω(Ak) is isomorphic to Lφ

Ω(Bk), so it has the
total dual, by Lemma 3.4, [12]. Therefore Lφ

Ω(Ak) is a weakly closed subspace
of X. Clearly,

⋃∞
k=1 Lφ

Ω(Ak) is a dense subspace of X. By Theorem A the
space X has an i.d. separable quotient with the total dual.

Case 2: φ ∈ Φ0 and ω(Ω) = ℵ0. Then there exists A ∈ Σ with d(A) = ℵ0.
Put B = (Ω\A). As in Case 1 we construct a dense subspace X of Lφ(Ω), which
is an (LF )tv-space; since d(A) = ℵ0 we can assume that (Ωn) ⊂ ΣA. Then
Lφ

Ω(B) ⊂ X and X/Lφ
Ω(B) is a dense subspace of an i.d. separable metrizable

space Lφ(Ω)/Lφ
Ω(B). Thus X/Lφ

Ω(B) is an i.d. separable quotient of X.
Case 3: φ ∈ Φ0 and ω(Ω) > ℵ0. By Theorem B the space Lφ(Ω) has no

i.d. separable quotient. As in Case 1, we construct a dense subspace X of
Lφ(Ω), which is an (LF )tv-space. X has no i.d. separable quotient. Indeed,
suppose, on the contrary, that X/Z is an i.d. separable quotient of X. Then
Lφ(Ω)/clLφ(Ω)Z is an i.d. separable quotient of Lφ(Ω); a contradiction. �
Corollary 3. Let (Ω, Σ, µ) be a measure space with ω(Ω) > ℵ0 and φ ∈ Φ0.
Then Lφ(Ω) contains a proper dense subspace X such that

(a) X is a metrizable (LF )tv-space with a defining sequence each of whose
members has an i.d. separable quotient with the total dual;

(b) X has no i.d. separable quotient.

Corollary 4. Let 0 < p < 1. The Orlicz space Lp([0, 1]c) contains a proper
dense subspace X such that

(a) X is a metrizable (LF )tv-space with a defining sequence each of whose
members has an i.d. separable quotient with the total dual;

(b) X has no i.d. separable quotient.

By Theorems 2 and C we obtain

Corollary 5. Let (Ω, Σ, µ) be a measure space with a σ-finite measure µ and
let φ ∈ Φ0. If Lφ(Ω) is non-separable, then it contains a subspace X such that:

(a) X is an (LF )tv-space with a defining sequence each of whose members
has an i.d. separable quotient with the total dual;

(b) X has no i.d. separable quotient;
(c) the quotient space Lφ(Ω)/clLφ(Ω)X is separable.

Now we show that there exist strict (LF )tv-spaces which have no i.d. sepa-
rable quotient.

Proposition 6. Let (Ω, Σ, µ) be a measure space with ω(Ω) > 2c and φ ∈ Φ0.
Assume that (Ωn) ⊂ Σ+ is an increasing sequence of atomless subsets of Ω
such that Lφ

Ω(Ωn)  Lφ
Ω(Ωn+1) for n ∈ N. Then the strictly (LF )tv-space

(E, τ) = lim−→Lφ
Ω(Ωn) has no i.d. separable quotient.

Proof. Put En = Lφ
Ω((Ωn)) for n ∈ N. Let (E/M, τ/M) be an i.d. quotient of

(E, τ). Then dim(E/M) ≥ dim(Ek/Ek ∩M) ≥ 1 for some k ∈ N. By Theo-
rem D, dim(Ek/Ek ∩M) = dim Lφ

Ω(A) for some A ∈ Σ+
Ωk

. Then dim Lφ
Ω(A) ≥
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d(A) ≥ ω(Ω), so dim(E/M) > 2c. Hence the quotient (E/M, τ/M) is non-
separable. Thus (E, τ) has no i.d. separable quotient. �

Proposition 7. Let (Ω, Σ, µ) be a measure space and let φ ∈ Φ0. Assume
that (Ωn) ⊂ Σ is an increasing sequence of sets such that Lφ

Ω(Ωn)  Lφ
Ω(Ωn+1)

for every n ∈ N and the space Lφ
Ω(Ωm) has an i.d. separable quotient for some

m ∈ N. Then the strict (LF )tv-space (E, τ) = lim−→Lφ
Ω(Ωn) has an i.d. separable

quotient, which is an F -space.

Proof. By Theorem B there exists A ∈ ΣΩm such that the space Lφ
Ω(A) is i.d

and separable. Let γ be the topology of Lφ(Ω). Put X =
⋃∞

k=1 Lφ
Ω(Ωk \A) and

Y = Lφ
Ω(A). Clearly, X ∩ Y = {0}, X + Y = E, X = Lφ

Ω(
⋃∞

k=1 Ωk \ A) ∩ E,
γ|Y = τ |Y and γ|E ⊂ τ . Hence X is closed in (E, τ). The linear map

T : (Y, γ|Y ) → (E/X, τ/X) , y → y + X,

is injective, surjective and continuous. Since (Y, γ|Y ) is an F -space and (E/X,
τ/X) is ultrabarrelled, T is open by the open mapping theorem. Thus (E/X,
τ/X) is isomorphic to (Y, γ|Y ), so (E, τ) has an i.d. separable quotient which
is an F -space. �

Proposition 8. Let (Ω, Σ, µ) be a measure space and φ ∈ Φ1. Assume that
(Ωn) ⊂ Σ is an increasing sequence of sets such that Lφ

Ω(Ωn)  Lφ
Ω(Ωn+1) for

n ∈ N. Then the strict (LF )tv-space (E, τ) = lim−→Lφ
Ω(Ωn) has an i.d. separable

quotient with the total dual.

Proof. Let γ be the topology of Lφ(Ω). Let k ∈ N. Lφ
Ω(Ωk) is a weakly closed

subspace of Lφ(Ω) (see the proof of Theorem 2). Since γ|E ⊂ τ , then Lφ
Ω(Ωk) is

weakly closed in (E, τ). Clearly,
⋃∞

k=1 Lφ
Ω(Ωk) = E. By Theorem A the space

(E, τ) has an i.d. separable quotient with the total dual. �

In 1989 S. A. Saxon and P. P. Narayanaswami proved that a quotient of
an (LF )-space is an (LF )-space or a Fréchet space ([11 ], Theorem 2). Using
similar arguments we obtain an analogical results for (LF )tv-spaces.

Proposition 9. Let (E, γ) = lim−→(En, γn) be an (LF )tv-space and let M be a
closed subspace of (E, γ). Then the quotient (E/M, γ/M) is

(a) an F -space if En + M = E for some n ∈ N;
(b) an (LF )tv-space if En + M 6= E for every n ∈ N.

Proof. The quotient (H, τ) = (E/M, γ/M) is ultrabarrelled. Let Q : E → H
be the quotient map. Put Qn = Q|En and Hn = Qn(En), n ∈ N. Clearly,
Q−1

n (0) = En ∩M , n ∈ N.
If En + M = E for some n ∈ N, then Hn = H. By the open mapping

theorem the continuous map Qn : (En, γn) → (H, τ) is open. Thus (H, τ) is an
F -space (isomorphic to (En/En ∩M, γn/En ∩M)).
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Now suppose that En + M 6= E for any n ∈ N. Then H =
⋃∞

n=1 Hn and
H 6= Hn ⊂ Hn+1, n ∈ N. Without loss of generality we can assume that
Hn 6= Hn+1 for each n ∈ N.

Let n ∈ N. Then τn = {U ⊂ Hn : Q−1
n (U) ∈ γn} is a vector topology

on Hn such that the map Qn : (En, γn) → (Hn, τn) is continuous and open.
Since the map Qn : (En, γ|En) → (Hn, τ |Hn) is continuous and γ|En ⊂ γn, then
τ |Hn ⊂ τn. Hence τn is Hausdorff and (Hn, τn) is an F -space isomorphic to
(En/En ∩M, γn/En ∩M) by the open mapping theorem.

Let n ∈ N and U ∈ τn+1. Since Q−1
n (U ∩Hn) = Q−1

n+1(U) ∩ En ∈ γn+1|En

and γn+1|En
⊂ γn, then U ∩Hn ∈ τn. Thus τn+1|Hn

⊂ τn, n ∈ N.
Let τ0 be the finest Hausdorff vector topology on H such that τ0|Hn ⊂ τn

for all n ∈ N. Since τ |Hn ⊂ τn for n ∈ N, then τ ⊂ τ0.
Now we prove that τ0 ⊂ τ . Let (Wn) be a topological string in (H, τ0).

Then (Q−1(Wn)) is a string in (E, γ) and Wn ∩Hn ∈ F(τn) for n ∈ N . Hence
Q−1(Wn) ∩ En = Q−1

n (Wn ∩ Hn) ∈ F(γn) for n ∈ N. Thus (Q−1(Wn)) is a
topological string in (E, γ) and the map Q : (E, γ) → (H, τ0) is continuous. So
τ0 ⊂ τ , since τ = {U ⊂ H : Q−1(U) ∈ γ}. Hence (H, τ) = lim−→(Hn, τn), thus
(H, τ) is an (LF )tv-space. �
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