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ON THE INVERSE PROBLEM FOR STURM-LIOUVILLE
OPERATOR WITH A NONLINEAR SPECTRAL

PARAMETER IN THE BOUNDARY CONDITION

Khanlar R. Mamedov

Abstract. The inverse scattering problem is investigated for some sec-
ond order differential equation with a nonlinear spectral parameter in
the boundary condition on the half line [0,∞). In the present paper
the coefficient of spectral parameter is not a pure imaginary number and
the boundary value problem is not selfadjoint. We define the scattering
data of the problem, derive the main integral equation and show that the
potential is uniquely recovered.

1. Introduction

We consider the inverse problem of scattering theory on the half line [0,∞)
for the equation

(1.1) −y′′ + q (x) y = λ2y

with the boundary condition

(1.2) y′ (0)− (α0 + α1λ) y (0) = 0,

where λ is spectral parameter, the potential q (x) is real valued and satisfying
the condition

(1.3)
∫ ∞

0

(1 + x) |q (x)| dx < ∞,

α0, α1 is real numbers, also α0, α1 ≥ 0. The inverse problem of scattering
theory on the half line for the boundary problem value (1.1)-(1.3) in the case
α1 = 0 was completely solved in [1, 2, 4, 5, 10, 11]. Inverse problems in the
half line with the spectral parameter contained in the boundary conditions was
investigated according to spectral function in [13], according to Weyl function in
[14, 15], according to scattering data in [7]-[9]. Some of the applications of these
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problems to wave equation were given in [14]. Spectral analysis involving linear
dependence on the spectral parameter in the boundary condition was studied in
[3]. In this paper we prove the uniqueness of a solution of the inverse problem
of scattering theory for the boundary problem (1.1)-(1.3) on the half line. As
different from previous works [7, 8], in the present paper the coefficient λ in
boundary condition is not a pure imaginary number. Therefore, the boundary
value problem (1.1)-(1.3) is not selfadjoint and it may have complex eigenvalues
(see [6] and [12], Appendix II).

The paper is organized as follows. In Section 2 the scattering data for
boundary value problem (1.1)-(1.3) is defined and some of their properties are
examined. The main equation, which relate the scattering data, are derived in
Section 3. In Section 4, we prove the uniqueness of the solution of the inverse
problem.

It is known [11] that for any λ from the closed upper half plane, equation
(1.1) has a unique solution e (x, λ) that can be represented in the form

(1.4) e(x, λ) = eiλx +
∫ ∞

x

K(x, t)eiλtdt

and the kernel K(x, t) satisfies the inequality

(1.5) |K(x, t)| ≤ 1
2
σ

(
x + t

2

)
exp

{
σ1(x)− σ1

(
x + t

2

)}
,

(1.6) K(x, x) =
1
2

∫ ∞

x

q(t)dt,

where

σ(x) ≡
∫ ∞

x

|q(t)| dt, σ1(x) ≡
∫ ∞

x

σ(t)dt.

The solution e (x, λ) is an analytic function of λ in the upper half plane Imλ ≥ 0
and is continuous on the real line. Moreover, the function e (x, λ) posses the
following properties:

|e(λ, x)| ≤ exp {−Imλx + σ1(x)} ,(1.7)
∣∣e(λ, x)− eiλx

∣∣ ≤
{

σ1(x)− σ1

(
x +

1
|λ|
)}

exp {−Imλx + σ1(x)} ,(1.8)
∣∣e′(λ, x)− iλeiλx

∣∣ ≤ σ(x) exp {−Imλx + σ1(x)} .(1.9)

For real λ 6= 0 the functions e(x, λ) and e(x,−λ) form a fundamental solu-
tions of equation (1.1) and their Wronskian is equal to 2iλ :

W {e(x, λ), e(x,−λ)} = e′(x, λ, )e(x,−λ)− e(x, λ)e′(x,−λ) = 2iλ.

Let ω(x, λ) be a solution of the equation (1.1) satisfying the following initial-
value conditions

ω′(0, λ) = α0 + α1λ, ω(0, λ) = 1.
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2. Scattering data

Lemma 2.1. For any real number λ 6= 0, the following identity is valid

(2.1)
2iλω(x, λ)

e′(0, λ)− (α0 + α1λ)e(0, λ)
= e(x,−λ)− S(λ)e(x, λ),

where

(2.2) S(λ) =
e′(0,−λ)− (α0 + α1λ)e(0,−λ)

e′(0, λ)− (α0 + α1λ)e(0, λ)

and

(2.3) S(λ) = S(−λ) = [S(−λ)]−1
.

Proof. Since the two functions e(x, λ) and e(x,−λ) form a fundamental system
of solutions to equation (1.1) for all real λ 6= 0, we can write

ω(x, λ) = A−e(x,−λ) + A+e(x, λ).

The Wronskian of solutions of equation (1.1) does not depend upon x, then we
get

W {ω(x, λ), e(x,±λ)} = ω′(0, λ, )e(0,±λ)− ω(0, λ)e′(0,±λ)
= −e′(0,±λ) + (α0 + α1λ)e(0,±λ).

On other hand
W {ω(x, λ), e(x,±λ)} = ∓2iλA∓.

Thus, we obtain

ω(x, λ) =
1

2iλ
{e′(0, λ)− (α0 + α1λ)e(0, λ)} e(x,−λ)

− 1
2iλ

{e′(0,−λ)− (α0 + α1λ)e(0,−λ)} e(x, λ).

Since q(x) is real, it follows that e(0,−λ) = e(0, λ), and hence that ϕ (λ) ≡
e′(0, λ) − (α0 + α1λ)e(0, λ) 6= 0 for all real λ 6= 0. From the last equality we
can obtain the equalities (2.1), (2.2), and (2.3). The lemma is proved. �

Lemma 2.2. The function ϕ (λ) may have only a finite number of zeros in
the half plane Imλ > 0 and all these zeros don’t lie on the imaginary axis.
Moreover, the function λ [ϕ (λ)]−1 is bounded in a neighborhood point λ = 0.

Proof. Since ϕ (λ) 6= 0 for all real λ 6= 0, the point λ = 0 is possible real zero
of the function ϕ (λ). It follows from the analyticity of the function ϕ (λ) on
upper half plane zeros of ϕ (λ) form at most countable set. It is obtained from
properties (1.7)-(1.9) of the function e(x, λ) that the zeros of the function ϕ (λ)
form bounded set in half plane Imλ > 0. Therefore, the zeros of ϕ (λ) form at
most countable and bounded set having λ = 0 as the only possible limit point.

Now let us show that the function ϕ (λ) may have a finite number zeros in
half plane Imλ > 0. Assume the converse. Suppose that ϕ (λ) have a infinite
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number zeros µn, n = 1, 2, . . .. Then, the function yn = y (x, µn) satisfies the
equation

(2.4) −y′′n + q(x)yn = µ2
nyn

and the boundary condition

(2.5) y′n (0)− (α0 + α1µn) yn (0) = 0.

Let’s multiply both sides of the equation (2.4) by yn and integrate this equation
over λ from 0 to∞. Using (2.5) from which we further obtain, via an integration
by parts,

µ2
n − α1 |yn (0)|2 µn − α0 |yn (0)|2 − (Lyn, yn) = 0,

where

(Lyn, yn) =
∫ ∞

0

(|y′n|2 + q(x) |yn|2)dx.

Then we obtain

µn =
α1 |yn (0)|2 ±

√
α2

1 |yn (0)|4 + 4α0 |yn (0)|2 + 4 (Lyn, yn)

2
.

Since µn is not a real number and α0 ≥ 0, then (Lyn, yn) < 0. From the inequal-
ities (Ly1, y1) < 0 and (Ly2, y2) < 0, we obtain (L(ay1 + by2), ay1 + by2) < 0
holds for arbitrary complex numbers a, b. Thus,

(L(aiyi + biyi+1), aiyi + biyi+1) < 0

for arbitrary numbers ai, bi (i = 1, 2, . . .).
From the asymptotic formulas ([12, p. 445])

yn (x) = eiλnx [1 + o (1)] , (x →∞)

it follows that the function yn (x) are linear independent and yn (0) 6= 0 for
arbitrary number n.

Now, we construct the following series of functions

zj (x) = ajyj (x) + bjyj+1 (x) , j = 1, 2, . . . .

Here, aj and bj are unknown complex numbers yet. Clearly, the numbers aj

and bj can be chosen such that the condition zj (0) = 0 holds. In this case, we
shall show that the functions zj (x) are linear independent. In fact, from the
equality

c1z1 (x) + c2z2 (x) + · · ·+ cnzn (x) = 0,

we write

c1a1y1 + (c1b1 + c2a2)y2 + · · ·+ (cn−1bn−1 + cnan)yn = 0.

Since the functions yn are linear independent, we have

c1a1 = 0,

c1b1 + c2a2 = 0,

· · · ,
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cn−1bn−1 + cnan = 0

or c1 = c2 = · · · = cn = 0.
Thus, the relations

(2.6) −z′′n + q(x)zn = λnzn,

(2.7) zn(0) = 0

hold.
Denote by the operator L0 in the space L2(0,∞) acting as L0y = −y′′+q(x)y

on the domain

D (L0) ≡ {y(x) | y′ (x) ∈ AC [0,∞) , − y′′ + q(x)y ∈ L2(0,∞), y (0) = 0} .

It follows from the relations (2.6), (2.7) that zn (x) ∈ D (L0) and (L0zn, zn) < 0.
Hence, we obtain that the operator L0 has only a infinite number negative
eigenvalues. But this is impossible due to the condition (1.3) on q(x) (see [11]).
We obtain a contradiction. It follows that the function ϕ (λ) may have only a
finite number of zeros in upper half plane Imλ > 0.

Now let us show that the zeros of the function ϕ (λ) are not pure imaginary
number. Assume the converse, let ϕ (λ0) = 0, λ0 = iµ, µ > 0. Then we obtain

−iα1 |y (0)|2 µ = µ2 + α0 |y (0)|2 + (Ly, y) .

Since α0, α1, µ, |y (0)|2 and (Ly, y) are real values, the last equality gives an
contradiction, i.e., λ0 is not a pure imaginary number.

Entirely analogously to Lemma 3.1.3 in [11] it is proved that the function
λ [ϕ (λ)]−1 is bounded on the neighborhood of zero. Lemma 2.2 is proved. �

Lemma 2.3. The zeros of the functions ϕ (λ) ≡ e′(0, λ) − (α0 + α1λ)e(0, λ)
and ϕ1 (λ) ≡ e′(0,−λ)− (α0 + α1λ)e(0,−λ) are complex conjugate each other
and the number of these zeros is equal.

Proof. According to Lemma 2.2 the function ϕ (λ) in upper half plane Imλ > 0
has finitely many zeros λk, k = 1, 2, . . . , n and ϕ (λk) = 0. From the properties
e(0, λk) = e(0,−λk), e′(0, λk) = e′(0,−λk) of the e(x, λ) we have ϕ (λk) =
e′(0,−λk) − (α0 + α1λk)e(0,−λk) = ϕ1

(
λk

)
or ϕ1

(
λk

)
= 0, k = 1, 2, . . . , n.

That is zeros of the functions ϕ (λ) and ϕ1 (λ) are complex conjugate, and also
the number of these zeros is equal. Lemma 2.3 is proved. �

According to [6] the function ϕ (λ) is called the denominator of the boundary
value problem (1.1)-(1.3). Since the function e(0, λ) is analytic in the upper
half plane Imλ > 0. It is clear from the formulas (1.7)-(1.9) that the function
ϕ (λ) is analytic in upper half plane and the asymptotic formula

(2.8) ϕ (λ) = α1 − i + O

(
1
λ

)

holds as |λ| → ∞.
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By the singular values of the boundary value problem (1.1)-(1.3) we mean
the roots of the equation ϕ (λ) = 0 which satisfy the conditions λk 6= 0, Imλk ≥
0 (see [12], p. 306). According to Lemma 2.2 the set of singular values of the
boundary value problem (1.1)-(1.3) is finite and non pure imaginary. The
multiplicity mk of a root λk of the equation ϕ (λ) = 0 is called the multiplicity
of the singular value λk, k = 1, 2, . . . , n.

From the relation (2.2) and (2.8), for Imλ ≥ 0 and |λ| → ∞, we get

(2.9) S (λ) = S0 + O

(
1
λ

)
,

where S0 = α1+i
α1−i . The function S (λ) defined by the formula (2.2) is called the

scattering function of the boundary value problem (1.1)-(1.3).

Lemma 2.4. The function S0 − S(λ) is the Fourier transform of a function
FS(x) of the form

FS(x) = F
(1)
S (x) + F

(2)
S (x),

where F
(1)
S (x) ∈ L1(−∞,∞), whereas F

(2)
S (x) ∈ L2(−∞,∞) and

sup
−∞<x<∞

∣∣∣F (2)
S (x)

∣∣∣ < ∞.

Proof. From the formula (1.4) it follows that

e(λ, 0) = 1 +
∫ ∞

0

K(0, t)eiλtdt,

e′(λ, 0) = iλ−K(0, 0) +
∫ ∞

0

Kx(0, t)eiλtdt.

Denoting
q0 = K(0, 0), σ0(λ) = λ(i− α1),

K1(t) = Kx(0, t)− α0K(0, t), K2(t) = α1K(0, t)
and

K̃j(−λ) =
∫ ∞

0

Kj(t)eiλtdt, j = 1, 2

for simplicity, we see that

S0 − S(λ) =
(1− S0)(α0 + q0) + S0

[
K̃1(−λ)− λK̃2(−λ)

]
+ K̃1(λ)− λK̃2(λ)

σ0(λ)− (α0 + q0) + K̃1(−λ)− λK̃2(−λ)
.

Every one of the functions

f̃1(λ) =
α0 + q0

σ0(λ)
, f̃±(λ) =

K̃1(±λ)− λK̃2(±λ)
σ0(λ)

,

is the Fourier transformation of a summable function. Hence we have

S0 − S(λ) =
f̃(λ)

1 + K̃(−λ)
,
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where

f̃(λ) = (1− S0)f̃1(λ) + S0f̃
−(λ) + f̃+(λ),

K̃(−λ) = f̃1(λ) + f̃−(λ).

Now let us rewrite the last equality as

S0 − S(λ) = f̃(λ)
[{

1 + (1− h̃(λN−1)K̃(−λ)
}−1

− 1
]

+f̃(λ)− f̃(λ)





1

1 +
{

1− h̃(λN−1)K̃(−λ)
} − 1

1 + K̃(−λ)



 ,(2.10)

where

h̃(λ) =





1, if |λ| < 1,
2− |λ| , if 1 ≤ λ ≤ 2,

0, if |λ| > 2,

is the Fourier transform of the function h(x) ∈ L1(−∞,∞). Also, h(λN−1) is
the Fourier transform of the function hN (x) = Nh(xN), and

(2.11) lim
N→∞

‖f(x)− hN ∗ f(x)‖L1
= 0

for all f(x) ∈ L1(−∞,∞), where hN ∗ f(x) is the convolution of functions
hN (x) and f(x) from L1(−∞,∞). The convolution hN ∗ f(x) of functions
hN (x) and f(x) from L1(−∞,∞) is defined as hN ∗f(x) =

∫∞
−∞hN (x−t)f(t)dt.

If ‖f‖L1
< 1, then the series (see [11, p. 190])

−f(x) + f ∗ f(x)− f ∗ f ∗ f(x) + · · ·
converges in the metric of L1(−∞,∞), its sum belongs to this space and its
Fourier transform is equal to

−f̃(λ) +
{

f̃(λ
}2

−
{

f̃(λ
}3

+ · · · =
{

1 + f̃(λ
}−1

− 1.

We conclude, from (2.11) and the previous argument, that for N large enough,
the function [1+{1−h̃(λN−1)}f̃(−λ)]−1−1 is the Fourier transform of function
from L1(−∞,∞). It follows that the sum of the first two terms in the right-
hand side of (2.10) is also the Fourier transform of a summable function F

(1)
S (x).

Finally, since h̃(λN−1) = 0 for |λ| > 2N , the third term in the same formula
vanishes for |λ| > 2N and is bounded. As such, it is the Fourier transform of
a bounded function F

(2)
S (x) ∈ L2(−∞,∞), and Lemma 2.4 is proved. �

It is known (see [12, p. 299]) that, the equation (1.1) has a solution ê(x, λ)
which for every α > 0 and δ > 0, as x →∞

ê(x, λ) = e−iλx [1 + o (1)] , (x →∞)



1250 KHANLAR R. MAMEDOV

uniformly in the domain Imλ ≥ α, |λ| ≥ δ. The solution ê(x, λ) is a holomorphic
function of λ in the Imλ ≥ α, |λ| ≥ δ, and as |λ| → ∞

ê(x, λ) = e−iλx

[
1 + O

(
1
λ

)]
, ê′(x, λ) = −iλe−iλx

[
1 + O

(
1
λ

)]

uniformly with respect to x ≥ 0.
We denote

(2.12) fj (x) =
1
2π

∫ ∞

−∞

[
ϕ̂ (λ)
ϕ (λ)

− 1
]

eiλxdλ = i Res
λ=λj

ϕ̂ (λ)
ϕ (λ)

eiλx,

where ϕ̂ (λ) = ê′0, λ)− (α0 + α1λ)ê(0, λ) and j = 1, 2, . . . , n.
We shall call the polynomial

(2.13) Pj (x) = e−iλjxfj (x) , j = 1, 2, . . . , n,

with degree of mj−1 the normalization polynomial for boundary value problem
(1.1)-(1.3), where mj is the multiplicity of the singular number λj (j = 1, 2, . . .,
n).

It turns out that the boundary value problem (1.1)-(1.3) is uniquely deter-
mined by the scattering function S (λ) , the non-real singular values λ1, λ2, . . .,
λn and the normalization polynomials P1 (x) , P2 (x) , . . . , Pn (x) . The set of
values {S (λ) , λj , Pj (x) , (j = 1, 2, . . . , n)} is called the scattering data of the
boundary value problem (1.1)-(1.3).

3. Main equation

Using the results in Section 2, we derive the main equation for boundary
value problem (1.1)-(1.3) allowing the kernel K (x, t) can be determined from
the scattering data.

Theorem 3.1. For each fixed x ≥ 0 the kernel K (x, t) satisfies the following
equation:

(3.1) F (x + ξ) + K(x, ξ) +
∫ ∞

x

K(x, t)F (t + ξ)dt = 0, x < ξ < ∞,

where Fs(x) and F (x) will be defined by the formulas (3.4), (3.6), respectively.

Proof. Writing (1.4) in (2.1) we obtain

2iω(x, λ)
[

λ

ϕ (λ)
+

1
α1 − i

]
− 2i

α1 − i
[ω(x, λ)− (cos λx + α1 sin λx)](3.2)

= [S0 − S (λ)]
{

eiλx +
∫ ∞

x

K(x, t)eiλtdt

}

+
∫ ∞

x

K(x, t)e−iλtdt + S0

∫ −x

−∞
K(x,−t)e−iλtdt.
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Let us multiply both sides of relation (3.2) by 1
2π eiλξ (ξ > x) and integrate this

relation over λ from −∞ to ∞:

1
2π

∫ ∞

−∞
2iω(x, λ)

[
λ

ϕ (λ)
+

1
α1 − i

]
eiλξdλ(3.3)

− 1
2π

∫ ∞

−∞

2i

α1 − i
[ω(x, λ)− (cos λx + α1 sin λx)] eiλξdλ

=
1
2π

∫ ∞

−∞
[S0 − S (λ)] eiλ(x+ξ)dλ

+
1
2π

∫ ∞

−∞
[S0 − S (λ)]

(∫ ∞

x

K(x, t)eiλ(x+ξ)dt

)
dλ

+
1
2π

∫ ∞

−∞

(∫ ∞

x

K(x, t)e−iλtdt

)
dλ.

On the right-hand side, taking K (x, t) = 0 for x > t into account, we obtain

Fs(x + ξ) + K(x, ξ) +
∫ ∞

x

K(x, t)Fs(t + ξ)dt,

where

(3.4) Fs(x) =
1
2π

∫ ∞

−∞
[S0 − S(λ)] eiλxdλ.

On the left-hand side of relation (3.3) using the Jordan’s lemma and the residue
theorem, we find that

−i
∑

Imλ>0

Res
λ=λi

ϕ̂ (λ)
ϕ (λ)

eiλ(x+ξ) − i

∫ ∞

x

K(x, t)
∑

Imλ>0

Res
λ=λi

ϕ̂ (λ)
ϕ (λ)

eiλ(t+ξ)dt(3.5)

= −
n∑

j=1

fj (x + ξ)−
∫ ∞

x

K(x, t)
n∑

j=1

fj (t + ξ) dt,

where fj (x) is defined by (2.12).
Thus, for ξ > x, taking the equalities (3.4) and (3.5) into account, from (3.3)

we derive the relation

−
n∑

j=1

fj (x + ξ)−
∫ ∞

x

K(x, t)
n∑

j=1

fj (t + ξ) dt

= Fs(x + ξ) + K(x, ξ) +
∫ ∞

x

K(x, t)Fs(t + ξ)dt.

We finally obtain

F (x + ξ) + K(x, ξ) +
∫ ∞

x

K(x, t)F (t + ξ)dt = 0, x < ξ < ∞,
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where

(3.6) F (x) =
n∑

j=1

fj (x) + Fs(x)

The proof is completed. �

The equation (3.1) is called the main equation or Gelfand-Levitan-Marchenko
equation of the inverse problem of scattering theory for the boundary value
problem (1.1)-(1.3).

Using the main equation (3.1), we obtain that the function F (x) is differen-
tiable on [0,∞) and its derivative satisfies the condition

(3.7)
∫ ∞

0

(1 + x) |F ′(x)| dx < ∞

and the function S (λ) is continuous at all real points λ (see [11, p. 210]).
Put

τ (x) =
∫ ∞

0

|F ′(t)| dt, τ1 (x) =
∫ ∞

x

τ(t)dt.

Then

(3.8) |F (x)| ≤
∫ ∞

x

|F ′(t)| dt = τ (x) , τ1 (0) < ∞

holds.

4. Uniqueness

Lemma 4.1. Assume that the function yx(t) is summable on the t ≥ x half
line and for t ≥ x

(4.1) yx (t) +
∫ ∞

x

yx (u)F (u + t)du = 0.

Then yx (t) ≡ 0 for t ≥ x.

Proof. It suffices to prove that homogeneous equation (4.1) has only trivial
solution yx (t) ≡ 0 for t ≥ x.

Let zx (t) be a solution of the integral equation

(4.2) yx (t) = zx (t) +
∫ t

x

K(ξ, t)zx(ξ)dξ

for t ≥ x, where the kernel K(x, t) satisfies the equation (3.1) and (by (1.5))
the condition

(4.3) |K(ξ, t)| ≤ cσ

(
ξ + t

2

)
, (c > 0) .

Then from (3.8) we have

(4.4)
∫ ∞

ξ

|F (t + u)K(ξ, u)| du ≤ c1τ1 (ξ) ,



INVERSE PROBLEM FOR STURM-LIOUVILLE OPERATOR WITH 1253

where c1 > 0. Substituting (4.2) into (4.1) we obtain

zx (t) +
∫ t

x

K(ξ, t)zx(ξ)dξ = −
∫ ∞

x

zx (ξ) F (ξ + t)dξ

−
∫ t

x

zx (ξ) dξ

∫ ∞

ξ

K(ξ, u)F (u + t)du

−
∫ ∞

t

zx (ξ) dξ

∫ ∞

ξ

K(ξ, u)F (u + t)du.

From the main equation (3.1) it’s obtained
∫ ∞

ξ

K(ξ, u)F (t + u)du = − [F (t + ξ) + K(ξ, t)]

for t ≥ ξ. Thus,

(4.5) zx (t) = −
∫ ∞

t

zx (ξ) [F (ξ + t) +
∫ ∞

ξ

K(ξ, u)F (u + t)du]dξ, (t ≥ ξ)

holds. Hence, zx (t) is a solution of Volterra type homogenous integral equation
for t ≥ x. The kernel function of this integral equation is a rapidly decreasing
function owing to (3.8) and (4.4). Therefore, we have zx (t) ≡ 0 for t ≥ x and
in view of (4.2) we have yx (t) ≡ 0 for t ≥ x. Lemma 4.1 is proved. �

We obtain the following theorem from Lemma 4.1.

Theorem 4.2. The scattering data uniquely determine the boundary-value
problem (1.1)-(1.3).

Proof. Obviously, to form main equation, it suffices to know the function F (x).
In turn, to find the function F (x), it suffices to know only the scattering data
of the boundary-value problem (1.1)-(1.3). Given the scattering data, we can
use formulas (3.4), (3.6) (also (2.13)) to construct the function F (x) and write
out the main equation (3.1) for the unknown function K(x, t). It follows from
Lemma 4.1 that the main equation has a unique solution. Solving this equation,
we find the function K(x, t), and by (1.6), hence potential q(x) = − 1

2
d
dxK(x, x).

�
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