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NOTES ON TANGENT SPHERE BUNDLES OF
CONSTANT RADII

JeongHyeong Park and Kouei Sekigawa

Abstract. We show that the Riemannian geometry of a tangent sphere
bundle of a Riemannian manifold (M, g) of constant radius r reduces
essentially to the one of unit tangent sphere bundle of a Riemannian
manifold equipped with the respective induced Sasaki metrics. Further,
we provide some applications of this theorem on the η-Einstein tangent
sphere bundles and certain related topics to the tangent sphere bundles.

1. Introduction

In the geometry of tangent bundles TM of Riemannian manifolds M =
(M, g), the Sasaki (lifted) metric is one of the most natural metrics (denoted
it by g̃ on TM) and the Riemannian geometry on (TM, g̃) has been studied
by many authors [1, 3, 10, 11]. It is also well-known that the Sasaki metric g̃
is compatible with the almost complex structure defined by taking account of
the Levi-Civita connection with respect to the metric g and further, (J, g̃) gives
rise to an almost Kähler structure on TM . Besides the Sasaki metric g̃, there
is another well-known Riemannian metric on TM (denoted by ĝ) defined by
Cheeger and Gromoll [5]. In the sequel, we shall call it the Cheeger-Gromoll
metric on TM . The explicit expression of the metric ĝ was given by Musso and
Tricerri [10]. The tangent sphere bundle Tr(M, g) of (M, g) of constant radius r
is regarded as a hypersurface of (TM, g̃) and in particular, T1(M, g) is called the
unit tangent sphere bundle of (M, g). It is interesting and useful to study the
relation between the geometric properties of (M, g) and Tr(M, g). We denote
the induced Sasaki metric on Tr(M, g) by g′r, T1(M, g) by g′1 and the rescaling
metric (4r2)−1gr

′ by ḡr. By making use of the almost Kähler structure (J, g̃),
we can define the so-called standard contact metric structure (ḡr, φ, ξ, η). In
our previous paper [4], we discussed the problem, “when is T1(M, g) equipped
with the standard contact metric structure η-Einstein?”, and also raised the
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similar problem for (Tr(M, g), ḡr, φ, ξ, η) [7]. Taking account of the arguments
in [2, 6, 8, 9, 11], it is natural to consider the relations among the tangent sphere
bundles of a Riemannian manifold of various constant radii equipped with the
induced Sasaki metrics and also the induced Cheeger-Gromoll metrics. We refer
to [1] for a related discussion of the natural metrics on the unit sphere bundles.
In [1], the metric on unit sphere bundle depends essentially on the Sasaki metric
and also on the vertical lift of the base metric. Contrary to this, the metrics
in this paper are defined on the common manifold Tr(M, g) = T1(M, r−2g)
and depend only on the Sasaki metrics with respect to g and r−2g on the base
manifold M . This is the primary difference from Abassi-Kowalski’s work [1].
The main theorem of this paper is the following:

Theorem 1. Let M = (M, g) be a Riemannian manifold. Then (Tr(M, g), g′r)
is homothetic to (T1(M, r−2g), (r−2g)′1) with the constant scaling factor r2 un-
der the identity map.

In Section 3, we shall prove Theorem 1, and give some applications. Finally,
in Section 4, we shall give remarks related to the theorems given in Section 3.

The authors would like to express their thanks to Professors Kowalski, Abassi
and Sekizawa for their helpful comments and assistance with this paper.

2. Tangent sphere bundles of constant radii

Let M = (M, g) be an n-dimensional Riemannian manifold and ∇ the
Levi-Civita connection of g. Its Riemannian curvature tensor R is defined
by R(X,Y )Z = [∇X ,∇Y ]Z −∇[X,Y ]Z for all vector fields X, Y and Z on M .
The tangent bundle of M is denoted by TM and consists of pairs (p, u), where
p is a point in M and u is a tangent vector to M at p. We denote by π the
natural projection π : TM −→ M , π(p, u) = p. For a vector field X on M , its
vertical lift Xv on TM is the vertical vector field defined by Xvω = ω(X) ◦ π,
where ω is any 1-form on M . For the Levi-Civita connection ∇ on M , the
horizontal lift Xh of X is defined by Xhω = ∇Xω. The tangent bundle TM
can be endowed in a natural way with a Riemannian metric g̃, the so-called
Sasaki (lifted) metric, depending only on the Riemannian metric g on M . It is
determined by

(2.1) g̃(Xh, Y h) = g̃(Xv, Y v) = g(X, Y ) ◦ π, g̃(Xv, Y h) = 0

for all tangent vector fields X, Y on M . Also, TM admits an almost complex
structure J defined by JXh = Xv and JXv = −Xh. Then it is well-known
that (J, g̃) is an almost Kähler structure on TM . The tangent sphere bundle
π̄ : Tr(M, g) −→ M of constant radius r is a hypersurface of TM given by
gp(u, u) = r2 for all p ∈ M . Note that π̄ = π ◦ i, where i is the inclusion
map. A unit normal vector field N to Tr(M, g) is given by N = 1

r uv for
(p, u) ∈ Tr(M, g). The horizontal lift of any vector of M is necessarily tangent
to Tr(M, g), but the vertical lift is not tangent to Tr(M, g) in general. So, we



NOTES ON TANGENT SPHERE BUNDLES OF CONSTANT RADII 1257

define the tangential lift of a vector X to (p, u) ∈ Tr(M, g) by

(2.2) Xt
(p,u) = Xv − 1

r2
g(X, u)uv.

Clearly, the tangent space T(p,u) (Tr(M, g)) is spanned by the vectors of the
forms Xh and Xv for X ∈ Tp(M)(p ∈ M). With the induced Sasaki metric g′r
on Tr(M, g), taking account of (2.2), we have

(2.3)

g′r(X
t, Y t) = g(X, Y )− 1

r2
g(X, u)g(Y, u),

g′r(X
t, Y h) = 0,

g′r(X
h, Y h) = g(X, Y )

for all vector fields X, Y on M . We denote by ∇′ the Levi-Civita connection
of g′r on Tr(M, g). Then ∇′ is given by

(2.4)

∇′XtY t = − 1
r2

g(Y, u)Xt,

∇′XtY h =
1
2

(R(u,X)Y )h
,

∇′XhY t = (∇XY )t +
1
2

(R(u, Y )X)h
,

∇′XhY h = (∇XY )h − 1
2

(R(X, Y )u)t

for all vector fields X,Y on M . Further, the curvature tensor R′ of (Tr(M, g),
g′r) is given by

R′(Xt, Y t)Zt = − 1
r2

(
g(X, Z)− 1

r2
g(X,u)g(Z, u)

)
Y t

(2.5)

+
1
r2

(
g(Y,Z)− 1

r2
g(Y, u)g(Z, u)

)
Xt,

R′(Xt, Y t)Zh =
{

R

(
X − 1

r2
g(X, u)u, Y − 1

r2
g(Y, u)u

)
Z

}h

+
1
4
{
[R(u, X), R(u, Y )]Z

}h
,

R′(Xh, Y t)Zt = −1
2

{
R

(
Y − 1

r2
g(Y, u)u, Z − 1

r2
g(Z, u)u

)
X

}h

− 1
4
{R(u, Y )R(u,Z)X

}h
,

R′(Xh, Y t)Zh =
1
2

{
R(X,Z)

(
Y − 1

r2
g(Y, u)u

)}t

− 1
4
{
R(X, R(u, Y )Z)u

}t

+
1
2
{
(∇XR)(u, Y )Z

}h
,
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R′(Xh, Y h)Zt =
{

R(X,Y )
(

Z − 1
r2

g(Z, u)u
)}t

+
1
4
{
R(Y,R(u,Z)X)u−R(X, R(u,Z)Y )u

}t

+
1
2
{
(∇XR)(u,Z)Y − (∇Y R)(u,Z)X

}h
,

R′(Xh, Y h)Zh = (R(X, Y )Z)h +
1
2
{
R(u, R(X, Y )u)Z

}h

− 1
4
{
R(u,R(Y, Z)u)X −R(u,R(X, Z)u)Y

}h

+
1
2
{
(∇ZR)(X, Y )u

}t

for all vector fields X, Y and Z on M .
Further, we denote by ρ′ and τ ′ the Ricci tensor and the scalar curvature

of (Tr(M, g), g′r), respectively. To calculate the Ricci tensor ρ′ at the point
(p, u) ∈ Tr(M, g), we choose an orthonormal basis { e1, . . . , en = u

r }. Then
{et

1, . . . , e
t
n−1, e

h
1 , . . . , eh

n} is an orthonormal basis for T(p,u) (Tr(M, g)), and from
(2.5), ρ′ is given by

ρ′(Xt, Y t) =
n− 2

r2

(
g(X, Y )− 1

r2
g(X, u)g(Y, u)

)

+
1
4

n∑

i=1

g(R(u,X)ei, R(u, Y )ei),

ρ′(Xt, Y h) =
1
2
((∇uρ)(X,Y )− (∇Xρ)(u, Y )),

ρ′(Xh, Y h) = ρ(X, Y )− 1
2

n∑

i=1

g(R(u, ei)X, R(u, ei)Y )

(2.6)

for all vector fields X, Y on M . From (2.6), we have further

(2.7) τ ′ = τ +
(n− 1)(n− 2)

r2
− 1

4

n∑

i,j

g(R(u, ei)ej , R(u, ei)ej),

where τ is the scalar curvature of M . In the rest of this section, we shall review
the definition of the standard contact metric structure on Tr(M, g). First, using
the almost complex structure J on TM , we define a unit vector field ξ′ (with
respect to the metric g′r), a 1-form η′ and a (1,1)-tensor field φ′ on Tr(M, g) by

(2.8) ξ′ = −JN, φ′ = J − η′ ⊗N.

Since g′(X̄, φ′Ȳ ) = 2rdη′(X̄, Ȳ ), (g′, φ′, η′, ξ′) is not a contact metric structure
on Tr(M, g). By rescaling as

(2.9) ξ = 2rξ′, η =
1
2r

η′, φ = φ′, ḡr =
1

4r2
g′,
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we get the standard contact metric structure (ḡr, φ, ξ, η). These tensors are
given by

ξ = 2uh,

φXt = −Xh +
1

2r2
g(X, u)ξ, φXh = Xt,

η(Xt) = 0, η(Xh) =
1

2r2
g(X, u),

ḡ(Xt, Y t) =
1

4r2

(
g(X,Y )− 1

r2
g(X,u)g(Y, u)

)
,

ḡ(Xt, Y h) = 0,

ḡ(Xh, Y h) =
1

4r2
g(X, Y ),

(2.10)

where X, Y are vector fields on M . Comparing (2.4), (2.5), and (2.6) with the
formulas (2.3), (2.4), and (2.5) in [7], we see that ∇̄ = ∇′, R̄ = R′ and ρ̄ = ρ′.
The scalar curvature τ̄ of the metric ḡr is given by

(2.11) τ̄ = 4r2τ + 4(n− 1)(n− 2)− r2
n∑

i,j=1

g(R(u, ei)ej , R(u, ei)ej),

where τ is the scalar curvature of M .
Since ρ′ = ρ̄ holds, from (2.7) and (2.11), we have

(2.12) τ̄ = 4r2τ ′.

3. Proof of the main theorem and applications

Let M = (M, g) be an n-dimensional Riemannian manifold, and Tr(M, g)
and T1(M, r−2g) be the tangent sphere bundle of constant radius r of (M, g) and
the unit tangent sphere bundle of (M, r−2g) equipped respectively with induced
Sasaki metrics g′r and (r−2g)′1. We see easily that the manifolds Tr(M, g) and
T1(M, r−2g) can be naturally identified. Next, from (2.2), we may also easily
check that the tangential lifts of a vector X of M to (p, u) ∈ TrM with respect
to the metrics g′r and (r−2g)′1 coincide, and hence, we denote it by using the
common letter Xt

(p,u). The similar fact is also valid for the horizontal lifts since
the Levi-Civita connections of the Riemannian metrics g and r−2g coincide.
From these observations and (2.3), we have

(
1
r2

g

)′

1

(Xt, Y t) =
(

1
r2

g

)
(X,Y )−

(
1
r2

g

)
(X,u)

(
1
r2

g

)
(Y, u)

=
1
r2

g′r(X
t, Y t),(3.1)

(
1
r2

g

)′

1

(Xt, Y h) = 0 =
1
r2

g′r(X
t, Y h),
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(
1
r2

g

)′

1

(Xh, Y h) =
1
r2

g(X, Y ) =
1
r2

g′r(X
h, Y h)

hold for all vector fields X, Y on M . This completes the proof of Theorem 1.

(I) Application 1.
Let M = (M, g) be a 2-dimensional Riemannian manifold and T1(M, g) be
the unit tangent sphere bundle of M equipped with the induced Sasaki metric
g′1. Let {e1, e2 = u} be an orthonormal basis at p ∈ M and {e′i} the basis at
(p, u) ∈ T1(M, g) given by

(3.2) e′1 = et
1, e

′
2 = eh

1 , e′3 = eh
2 .

Then, from (2.6), we have

(3.3)

ρ′(e′1, e
′
1) =

1
2
κ2,

ρ′(e′2, e
′
2) = ρ′(e′3, e

′
3) = κ− 1

2
κ2,

ρ′(e′1, e
′
2) =

1
2
e2κ, ρ′(e′1, e

′
3) = −1

2
e1κ,

ρ′(e′2, e
′
3) = 0,

where κ is the Gaussian curvature of M . From (3.3), we have further

(3.4) τ ′ = 2κ− κ2

2
=

κ

2
(4− κ).

Thus, from (3.4) and Theorem 1, we have the following:

Theorem 2. Let M = (M, g) be a 2-dimensional Riemannian manifold of
constant Gaussian curvature c. Then, the scalar curvature τ ′ of the unit tangent
sphere bundle T1(M, g) = (T1(M, g), g′1) is constant and satisfies the following
relations:

(1) If c > 0, then τ ′ > 0 for c < 4, τ ′ = 0 for c = 4, τ ′ < 0 for c > 4.
(2) If c ≤ 0, then τ ′ ≤ 0.

Thus, from Theorems 1 and 2, we have the following:

Corollary 3 ([10, Corollary 3.4]). Let M = (M, g) be a 2-dimensional Rie-
mannian manifold of constant Gaussian curvature c. Then, the scalar curva-
ture τ ′ of the tangent sphere bundle (Tr(M, g), g′r) is constant and satisfies the
following relations:

(1) If c > 0, then τ ′ > 0 for r <
2√
c
, τ ′ = 0 for r =

2√
c
, τ ′ < 0 for r >

2√
c
.

(2) If c ≤ 0, then τ ′ ≤ 0 for all r.

Kowalski and Sekizawa [9] extended Corollary 3 for arbitrary dimension.

(II) Application 2.
A contact metric manifold M̄ = (M̄, ḡ, φ, ξ, η) is called an η-Einstein manifold
if the Ricci tensor ρ is of the form ρ̄ = αḡ + βη ⊗ η with α and β being
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smooth functions. Based upon the theorems that α and β are constant on the
η-Einstein tangent sphere bundles with constant radii [4, 7] and Theorem 1,
we may have the following:

Theorem 4. (Tr(M, g), ḡr, φ, ξ, η) is isomorphic with (T1(M, r−2g), (r−2g)1,
φ, ξ, η) as a contact metric manifold under the identity map, and hence, in
particular, (Tr(M, g), ḡr, φ, ξ, η) is η-Einstein if and only if (T1(M, r−2g),
(r−2g)1, φ, ξ, η) is η-Einstein.

In [4], we prove that the unit tangent sphere bundle (T1M, ḡ1, φ, ξ, η) of a
2-dimensional Riemannian manifold M = (M, g) is η-Einstein if and only if
M is of constant Gaussian curvature κ = 0 or 1. Thus, taking account of
Theorem 4, we see that (TrM, ḡr, φ, ξ, η) is η-Einstein if and only if M is of
constant Gaussian curvature κ = 0 or 1

r2 [7].

(III) Application 3.

The Cheeger-Gromoll metric (denoted it by ĝ) on the tangent bundle TM of a
Riemannian manifold (M, g) is defined by

(3.5)

ĝ(Xv, Y v) =
1

1 + r2
(g(X, Y ) + g(X, u)g(Y, u)),

ĝ(Xv, Y h) = 0,

ĝ(Xh, Y h) = g(X,Y ),

at each point (p, u) ∈ TM for all tangent vectors X, Y at p ∈ M . Here r = |u|
([10, 11]).

Further, we denote by ĝ′r the induced Cheeger-Gromoll metric on Tr(M, g).
Then, from (2.2) and (3.5), we may easily check that the metric ĝ′r is given
explicitly by

(3.6)

ĝ′r(X
t, Y t) =

1
1 + r2

(
g(X, Y )− 1

r2
g(X, u)g(Y, u)

)
,

ĝ′r(X
t, Y h) = 0,

ĝ′r(X
h, Y h) = g(X, Y ),

at each point (p, u) ∈ Tr(M, g) for all tangent vectors X,Y on M . Now, we
define the diffeomorphism f : Tr(M, g) → T r√

1+r2
(M, g) defined by

(3.7) f : (p, u) 7−→
(

p,
u√

1 + r2

)
.

From (3.5), since ĝ(p,u)(uv, uv) = r2(r = |u|) for any u ∈ TpM , we may observe
that the tangential lift of a vector X of M to (p, u) ∈ Tr(M, g) with respect to
the Cheeger-Gromoll metric ĝ takes the same form as (2.2). By the definition
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of the map f , we have

(3.8)
(f∗)(p,u)

(
Xt
)
(p,u)

=
1√

1 + r2

(
Xt
)
(p, u√

1+r2
)
,

(f∗)(p,u)

(
Xh
)
(p,u)

=
(
Xh
)
(p, u√

1+r2
)

for all tangent vector X of M and any (p, u) ∈ TrM . Thus, from (3.8), we have

(3.9)

(
g r√

1+r2

)′
�

p, u√
1+r2

�
(
(f∗)(p,u)

(
Xt
)
(p,u)

, (f∗)(p,u)

(
Y t
)
(p,u)

)

=
1

1 + r2

(
g(X, Y )− 1

r2
g(X, u)g(Y, u)

)
= ĝ′(p,u)(X

t, Y t),

(
g r√

1+r2

)′
�

p, u√
1+r2

�
(
(f∗)(p,u)

(
Xt
)
(p,u)

, (f∗)(p,u)

(
Y h
)
(p,u)

)

=
1√

1 + r2
ĝ′(p,u)(X

t, Y h) = 0,

(
g r√

1+r2

)′
�

p, u√
1+r2

�
(
(f∗)(p,u)

(
Xh
)
(p,u)

, (f∗)(p,u)

(
Y h
)
(p,u)

)

= ĝ′(p,u)(X
h, Y h) = g(X, Y ),

at any point (p, u) ∈ TrM for all tangent vectors X, Y of M at p ∈ M .
Thus, from (3.9), we see that f is an isometry from (Tr(M, g), ĝ′r) onto

(T r√
1+r2

(M, g), g′ r√
1+r2

). This fact was already announced by Boeckx [2]. Thus,

taking account of Theorem 1, we have the following:

Theorem 5. Let (M , g) be a Riemannian manifold. Then the tangent sphere
bundle (Tr(M, g), ĝ′) of constant radius r is homothetic to the unit tangent
sphere bundle (T1(M, 1+r2

r2 g),(1+r2

r2 g)′) with the constant scaling factor r2

1+r2

through the diffeomorphism f given by (3.7), where ĝ′ and ( 1+r2

r2 g)
′

are the
induced Cheeger-Gromoll metrics on Tr(M, g) and the induced Sasaki metric
on T1(M, 1+r2

r2 g), respectively.

4. Remarks

Let (M, g) be an n-dimensional Riemannian manifold and r > 0 be a smooth
function on M . We consider the tangent sphere bundle (Tr(M, g), ḡr) of vari-
able radius r and the unit tangent sphere bundle (T1(M, r−2g), (r−2g)1) over
M . Here, we adopt the similar notational conventions as in the case of constant
radii. We recall that the manifolds Tr(M, g) and T1(M, r−2g) can be naturally
identified. We set g∗ = r−2g, and denote the tangential lift and the horizontal
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lift of a tangent vector X at a point p ∈ M to the point u ∈ T1(M, g∗) by Xt∗

and Xh∗ with respect to (T (M, g∗), g̃∗) respectively. Then, we have

(4.1)
Xt∗ = Xt,

Xh∗ = Xh+
(

Xr

r

)
uv+

(ur

r

)
Xv−g(X,u)

(∇r

r

)v

at any point (p, u) ∈ T1(M, g∗), where Xh denotes the horizontal lift of X with
respect to (T (M, g), g̃), and ∇r denotes the gradient vector of r. From (4.1),
(2.2), (2.3), and (2.9), by direct calculations, we have the following:
(4.2)

(g∗)1(Xt, Y t) = (g∗)1(Xt∗, Y t∗) =
1

4r2

(
g(X, Y )− 1

r2
g(X, u)g(Y, u)

)

= ḡr(Xt, Y t),

(g∗)1(Xt∗, Y h∗) = 0,

ḡr(Xt∗, Y h∗) =
1

4r2
g′
(

Xv − 1
r2

g(X, u)uv, Y h +
Y r

r
uv

+
ur

r
Y v − g(Y, u)

r
(∇r)v

)

=
1

4r2

(
ur

r
g(X, Y )− g(Y, u)

r
Xr

)
,

(g∗)1(Xh∗, Y h∗) =
1

4r2
g(X,Y ),

ḡr(Xh∗, Y h∗) =
1

4r2
g(X, Y ) +

1
4r2

{
(Xr)(Y r) +

(ur)2

r2
g(X, Y )

+
g(X,u)g(Y, u)

r2
|∇r|2 − ur

r2
g(Y, u)Xr−ur

r2
g(X, u)Y r

}

for any tangent vectors X,Y and u ∈ Tr(M, g).
From (4.2), we immediately have the following:

Theorem 6. Let r be a positive valued smooth function on M. Then, (Tr(M, g),
ḡr) is isometric to (T1(M, g∗), (g∗)1) under the identity map if and only if r is
a constant valued function on M , where g∗ = r−2g.

We may define an almost contact metric structure (ḡr, φ, ξ, η) on Tr(M, g) in
a similar way as in the case of the constant radius which is called the stan-
dard contact metric structure. We denote by (g∗, φ∗, ξ∗, η∗) the standard con-
tact metric structure on T1(M, g∗). Let N and N∗ be the unit vectors to
Tr(M, g)(= T1(M, g∗)) with respect to the Riemannian metric g̃ and g̃∗ on
TM , respectively. Then, taking account of (4.1), we see that N and N∗ are
give by

(4.3) N =
1

r
√

1 + |∇r|2 (uv − r(∇r)h), N∗ = uv.
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We see also that the vectors Xt and Xh′ ≡ Xh + Xr
r uv are tangent to Tr(M, g).

Thus, from (4.1) and (4.3), by direct computation, we have the following equal-
ities:

(4.4)

ξ =
2√

1 + |∇r|2 (uh + r(∇r)v),

ξ∗ = 2uh +
4ur

r
uv − 2r(∇r)v,

φXt = −Xh +
1
r2

g(X,u)uh

+
r2Xr − g(X, u)ur

r2(1 + |∇r|2) (∇r)h − r2Xr − g(X, u)ur

r3(1 + |∇r|2) uv

φ∗Xt = −Xh +
1
r2

g(X,u)uh − Xr

r
uv − ur

r
Xv +

2ur

r3
g(X,u)uv,

φXh∗ = Xv − Xr

r
uh − ur

r
Xh − 2(Xr)ur + (1− |∇r|2)g(X, u)

r2(1 + |∇r|2) uv

+
2(g(X, u) + (Xr)ur)

1 + |∇r|2
(∇r

r

)h

,

φ∗Xh∗ = Xt.

Thus, from (4.4) and Theorem 6, we have immediately the following:

Theorem 7. Let r be a smooth positive function on M . Then, the almost
contact structure (φ, ξ, η) and the contact structure (φ∗, ξ∗, η∗) on Tr(M, g) co-
incide if and only if r is constant on M . If r is constant on M , then the contact
metric structures (ḡr, φ, ξ, η) and ((g∗)1, φ

∗, ξ∗, η∗) (g∗ = r−2g) coincide.

Relating to the Theorems 4, 6, and 7, the following question naturally arises.

Question. Does there exist a non-constant positive valued smooth function r
on M such that the almost contact structure (φ, ξ, η) (resp. the almost contact
metric structure (ḡr, φ, ξ, η)) is a contact structure (resp. a contact metric
structure) on Tr(M, g)?

Further, it is also to worthwhile to discuss the relation between the standard
almost contact metric structure (ḡr, φ, ξ, η) and the standard contact metric
structure ((g∗)1, φ

∗, ξ∗, η∗) on Tr(M, g).
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