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APPROXIMATION TO THE
CUMULATIVE NORMAL DISTRIBUTION

USING HYPERBOLIC TANGENT BASED FUNCTIONS

Beong In Yun

Abstract. This paper presents a method for approximation of the stan-
dard normal distribution by using hyperbolic tangent based functions.
The presented approximate formula for the cumulative distribution de-
pends on one numerical coefficient only, and its accuracy is admissible.
Furthermore, in some particular cases, closed forms of inverse formulas
are derived. Numerical results of the present method are compared with
those of an existing method.

1. Introduction

For a random variable X following a probability density function(p.d.f.) of
the standard normal distribution,

(1) g(x) =
1√
2π

e−
x2
2 , −∞ < x <∞

the cumulative distribution function (or the cumulative normal distribution) is
defined as

(2) P (ξ) := Pr(X ≤ ξ) =
1
2

+
∫ ξ

0

g(x)dx , ξ ≥ 0 .

Since analytical integration of the p.d.f. g(x) is not possible, lots of approxima-
tion formulas to the cumulative normal distribution P (ξ) have been developed.
Most of them are based on the form of series expansion which, in theory, can
approximate P (ξ) with arbitrarily high precision by increasing the number of
terms [6, 10, 9, 13, 14]. Another approximations are the so-called “ad hoc
approximations” which often take simple forms with few numerical coefficients
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[1, 4, 5, 7, 8]. General classification and further comments on these approxi-
mations are given by Waissi and Rossin [14] and Bryc [2].

In this paper, employing hyperbolic tangent based functions such as ψr,j(t)
in (11) and φr(t) in (15), we propose a p.d.f. resembling g(x). This produces
a kind of ad hoc approximation formula for P (ξ) which includes only one in-
dependent numerical coefficient r > 0. The value of r is determined by a
condition upon the corresponding variance. The present formula seems to be
rather simple and, by comparison of the numerical results, one can observe that
it produces a better approximation error than an existing formula in the work
of Lin [7] that also contains one independent numerical coefficient.

Some outstanding approximate formulas for the cumulative normal distri-
bution P (ξ) are summarized in the next section. In Section 3 we develop the
hyperbolic tangent based functions and then the related approximation for-
mulas for P (ξ) are induced in Section 4. Numerical results of the present
approximations are given in Section 5 including comparison with an existing
approximation formula.

2. Overview of approximations to the cumulative distribution

In this section we summarize some typical approximation formulas, denoted
by Q(ξ), for the cumulative normal distribution P (ξ) in (2) as follows.

2.1. Approximations based on the series expansion

· Page’s approximation [10]:

(3) QPag(ξ) = 1−
{

1 + exp

(
1∑

k=0

akξ
2k+1

)}−1

with a0ξ+a1ξ
3 = (1.5976)ξ+(0.070565992)ξ3 . The absolute error is less than

1.4× 10−4 over 0 ≤ ξ <∞.

· Waissi and Rossin’s approximation [14]:

(4) QWai(ξ) =

{
1 + exp

(
−√π

2∑

k=0

bkξ
2k+1

)}−1

with

b0ξ + b1ξ
3 + b2ξ

5 = (0.9000000)ξ + (0.0418198)ξ3 − (0.0004406)ξ5 .

The absolute error is less than 4.3×10−5 over 0 ≤ ξ < 8 (Blows up for ξ ≥ 10).

2.2. Ad hoc approximations

· Lin’s approximation [7]:

(5) QLin(ξ) = 1−
{

1 + exp
(

4.2πξ
9− ξ

)}−1

.
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The absolute error is less than 6.8× 10−3 over 0 ≤ ξ < 9 (Blows up for ξ ≥ 9).

· Bryc’s uniform approximation [2]:
The two-numerical constants formula is

(6) QBry
2 (ξ) = 1− ξ + 3.333√

2πξ2 + 7.32ξ + 2× 3.333
e−ξ2/2.

The absolute error is less than 7.1 × 10−4 over 0 ≤ ξ < ∞ (The largest error
occurs in the range 1.07 ≤ ξ ≤ 1.13). In addition, the four-numerical constants
formula is
(7)

QBry
4 (ξ) = 1− ξ2 + 5.575192695ξ + 12.77436324√

2πξ3 + 14.38718147ξ2 + 31.53531977ξ + 2× 12.77436324
e−ξ2/2.

The absolute error is less than 1.9 × 10−5 over 0 ≤ ξ < ∞ (The largest error
occurs in the range 1.43 ≤ ξ ≤ 1.61).

· Hart’s uniform approximation [5]:
(8)

QHar(ξ)=1− e
−ξ2/2

√
2πξ


1−

√
1 + bξ2/(1 + aξ2)

P0ξ +
√
P 2

0 ξ
2 + exp(−ξ2/2)

√
1 + bξ2/(1 + aξ2)


 ,

where

a = (1 +
√

1− 2π2 + 6π)/2π , b = 2πa2 , P0 =
√
π/2.

The absolute error is less than 5.4 × 10−5 over 0 ≤ ξ < ∞ (The largest error
occurs in the range 1.03 ≤ ξ ≤ 1.04).

· Bagby’s uniform approximation [1]:
(9)

QBag(ξ) =
1
2

+
1
2

{
1 − 1

30

[
7e−ξ2/2 + 16e−ξ2(2−√2) +

(
7 +

π

4
ξ2
)
e−ξ2

]}1/2

.

The error QBag(ξ)−P (ξ) varies from −3×10−5 near ξ = 0.30 to 3×10−5 near
ξ = 1.70, and it vanishes both as ξ → 0 and as ξ →∞.

· Moran’s approximation [8]:

(10) QMor(ξ) =
1
2

+
1
π

{
ξ

3
√

2
+

12∑

k=1

1
k
e−k2/9 sin(kξ

√
2/3)

}
.

The absolute error is less than 3.×10−10 over 0 ≤ ξ ≤ 7 (Blows up for ξ ≥ 11).
In this work, focusing on the numerical simplicity, we are interested in de-

veloping a new ad hoc approximation formula for the cumulative normal dis-
tribution P (ξ).
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3. Hyperbolic tangent based functions

For any integer j ≥ 1 and for any real r > 0, we define a so-called hyperbolic
tangent based function

(11) ψr,j(t) =
1
2

{
1 + tanh

[
r

j2j+1

(
1

(1− t)j
− 1
tj

)]}
, 0 ≤ t ≤ 1

which is a strictly increasing map from an interval [0, 1] onto itself with a
derivative

(12) ψ′r,j(t) =
r

2j+2

{
1

(1− t)j+1
+

1
tj+1

}
sech2

[
r

j2j+1

(
1

(1− t)j
− 1
tj

)]
.

Particularly, when j = 1 we have

(13) ψr,1(t) =
1
2

{
1 + tanh

[
r

4

(
1

1− t
− 1

t

)]}

which is the transformation introduced by Sag and Szekeres [12], i.e., an infi-
nite order sigmoidal transformation for any r >

√
3 (See Elliott [3]). Sigmoidal

transformations are mainly used for accurate numerical evaluation of the sin-
gular integrals via coordinate transformations.

We can observe that the function ψr,j(t) has the following properties.
(P1) ψr,j(t) ∈ C∞[0, 1] with

ψr,j(0) = 0 , ψr,j

(
1
2

)
=

1
2
, ψr,j(1) = 1.

(P2) ψr,j(t) + ψr,j(1− t) = 1 , 0 ≤ t ≤ 1.
(P3) Every order of derivatives of ψr,j(t) vanish at both end points, that is,

ψ
(k)
r,j (0) = ψ

(k)
r,j (1) = 0 , k = 1, 2, . . . .

From (12) we note that the first derivative of ψr,j(t) has a local maximum at
t = 1

2 as

(14) ψ′r,j

(
1
2

)
= r

independently of j.
On the other hand we may consider another form of the hyperbolic tangent

based function

(15) φr(t) =
1
2
{
1 + tanh

[
r tanh−1(2t− 1)

]}
, 0 ≤ t ≤ 1

with a derivative

(16) φ′r(t) =
r

4t(1− t)
sech2

[
r tanh−1(2t− 1)

]
.

In fact, since tanh−1(t) = 1
2 log

(
1+t
1−t

)
, φr(t) becomes

φr(t) =
tr

tr + (1− t)r
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which is the so-called simple sigmoidal transformation presented by Prössdorf
and Rathsfeld [11]. The function φr(t) also satisfies the properties (P1) and
(P2) with

φ(k)
r (t) = O

(
tr−k

)
, k = 1, 2, . . . , brc

near t = 0 and t = 1. Moreover, φr(t) has its inverse such as

(17) (φr)
−1 (s) = φ1/r(s) , 0 ≤ s ≤ 1

and a local maximum of the first derivative is

(18) φ′r
(

1
2

)
= r.

4. The probability density function

For a real a > 0, employing the hyperbolic tangent based function ψr,j , we
define a function hr,j on the real line R such as

(19) hr,j(x) :=





1
2a

ψ′r,j

(
a+ x

2a

)
, |x| ≤ a ,

0 , |x| > a.

We can see that hr,j is compact supported with hr,j ∈ C∞(R) and it is a
well-defined p.d.f. on R by observing that

∫ ∞

−∞
hr,j(x) dx =

∫ 1

0

ψ′r,j(t) dt = 1

from the property (P1).
Moreover, from the properties of ψr,j(t) and the formula (14), we note that

a local maximum of hr,j is

hr,j(0) =
r

2a
independently of j. In order to approximate the p.d.f of the standard normal
distribution given in (1) we use a constraint, hr,j(0) = g(0) = 1/

√
2π. Then

the half length of the support of hr,j satisfies

(20) a =
√
π

2
r.

Therefore, for any integer j chosen, we only have to determine the coefficient
r of the function hr,j in (19). Let X be a random variable related to the p.d.f.
hr,j(x). Then, by change of variables and integration by parts, the second
moment of X (or the variance of X) becomes

E(X2) =
1
2a

∫ a

−a

x2ψ′r,j

(
a+ x

2a

)
dx

= a2

{
1 − 4

∫ 1

0

(2t− 1)ψr,j(t) dt
}
.
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To estimate r, we propose a condition that the variance of X above should be
equal to that of the standard normal distribution as below.

(21)
π

2
r2
{

1 − 4
∫ 1

0

(2t− 1)ψr,j(t) dt
}

= 1

for each integer j ≥ 1 fixed. For some values of j, corresponding numerical
solutions for r of the equation (21) are given in Table 1. Therein, r∗ indi-
cates the optimal value for which approximation of the cumulative distribution
function P (ξ) proposed in the next section results in the best absolute error,
numerically. It is seen that the values of r and a are increasing as j goes higher.

Table 1. Numerical solutions for r of the equation (21) and related
values of a based on the formula (20).

j r a r∗ a∗

1 4.1369 5.1848 4.04 5.0759
2 5.7248 7.1749 5.60 7.0186
4 8.9047 11.160 8.76 10.966
6 12.085 15.146 11.9 14.914
8 15.265 19.132 15.1 18.925
10 18.445 23.117 18.2 22.810

For instance, the approximation errors of hr,j(x), j = 1, 4, to the p.d.f. g(x)
in (1) are shown in Figure 1. The value of r for each j was chosen from
Table 1. From the numerical results it was observed that, as j goes higher, the
error becomes somewhat better and this tendency is limited, however.

5. The cumulative normal distribution

We denote by Hr,j(ξ) a cumulative distribution function corresponding to
the p.d.f. hr,j in the form of
(22)

Hr,j(ξ) =
∫ ξ

−∞
hr,j(x) dx = ψr,j

(
a+ ξ

2a

)

=
1
2

{
1 + tanh

[
r

2j

(
1

(1− ξ/a)j
− 1

(1 + ξ/a)j

)]}
, 0 ≤ ξ ≤ a

with a satisfying the relation (20). SinceHr,j(a) = 1, we may defineHr,j(ξ) = 1
for all ξ > a. Then Hr,j(ξ) ∈ C∞(0,∞) and it can be used for approximation
to the cumulative normal distribution P (ξ) given in (2).

By the numerical experiment using a symbolic program, Mathematica v.5,
we have the following results for approximation errors: For j = 1

‖Hr∗,1 − P‖∞ ≤ 1.8× 10−3
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Figure 1. Differences of the functions hr,1(x) and hr,4(x) from the p.d.f. g(x) of the
standard normal distribution.

and for any j ≥ 2
‖Hr∗,j − P‖∞ ≤ 8.9× 10−4

with r∗ and a∗ chosen according to each j as given in Table 1. It can be seen
that as j goes higher, the error becomes better. For example, Figure 2 shows
errors Hr∗,j(ξ)−P (ξ), 0 ≤ ξ ≤ 5 for each j = 1, 4, 10 combined with the values
of r∗ and a∗ in Table 1. In addition, it is observed that the error has extremes
near ξ = 1.2 and ξ = 2.5 for all j.

In the formulas (19)-(22), replacing the hyperbolic tangent based function
ψr,j by φr defined in (15), we have another simple approximation such as

(23)
Hr(ξ) = φr

(
a+ ξ

2a

)

=
1
2

{
1 + tanh

[
r · tanh−1

(
ξ

a

)]}
, 0 ≤ ξ ≤ a

and Hr(ξ) = 1 for all ξ > a, where r is determined by solving the equation

(24)
π

2
r2
{

1 − 4
∫ 1

0

(2t− 1)φr(t) dt
}

= 1

and a satisfies the relation (20). The numerical solution of (24) can be obtained
as r = 2.5673 by using the Newton method. Instead of this vale for r, however,
a more appropriate value r∗ can be chosen to get a better approximation to
P (ξ) like the case of Hr,j(ξ).

Furthermore, we can obtain a closed form of the inverse formula of Hr as

(25) H−1
r (η) = a · tanh

[
1
r

tanh−1 (2η − 1)
]
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for 1
2 ≤ η ≤ 1. Similarly, from (22) with j = 1, we have an inverse of Hr,1 in

the form of

(26) H−1
r,1 (η) =

ar

2 tanh−1(2η − 1)



−1 +

√
1 +

(
2 tanh−1(2η − 1)

r

)2


 .

It should be noted that the present approximations Hr,j(ξ) with j fixed and
Hr(ξ) include only one independent numerical coefficient, r and a constant, a
related with r via (20) so that comparison with the simplest existing approxi-
mation QLin(ξ) containing one numerical coefficient seems to be reasonable. In
Figure 3, the errors of Hr∗,10(ξ) with r∗ = 18.2 and Hr∗(ξ) with r∗ = 2.48 are
compared with that of the Lin’s formula QLin(ξ) given in (5).

−1 × 10−3

−5 × 10−4

0

5 × 10−4

1 × 10−3

0 1 2 3 4 5
(ξ)

j = 1

j = 4

j = 10

Figure 2. Differences of the present approximations Hr∗,j(ξ), j = 1, 4, 10, from the
cumulative normal distribution P (ξ).

6. Conclusions

We proposed a procedure to approximate the cumulative normal distribu-
tion P (ξ) by using the so-called hyperbolic tangent based function. Despite
containing only one independent numerical coefficient, the presented formula
in (22) gives better results than the existing Lin’s approximation formula which
also includes one independent numerical coefficient.

The use of another hyperbolic tangent based function φr(t), defined in (15),
instead of ψr,j(t) in the present method is also available. The resultant approx-
imation formula in (23) is rather simpler. However, the approximation error is
slightly worse than the case combined with ψr,j(t).

Additionally, in the case of φr(t) or ψr,1(t), we can use the inverse formula
(25) or (26) for a given value of the cumulative normal distribution P (ξ).
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−7 × 10−3

−2 × 10−3

−1 × 10−3

0

1 × 10−3

2 × 10−3
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Hr∗(x)
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Figure 3. Differences of the approximations QLin(x), Hr∗(ξ) and Hr∗,10(ξ) from the
cumulative normal distribution P (ξ).
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