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GENERATING RELATIONS INVOLVING 3-VARIABLE
2-PARAMETER TRICOMI FUNCTIONS USING

LIE-ALGEBRAIC TECHNIQUES

Subuhi Khan, Mumtaz Ahmad Khan, and Rehana Khan

Abstract. This paper is an attempt to stress the usefulness of the multi-
variable special functions. In this paper, we derive generating relations
involving 3-variable 2-parameter Tricomi functions by using Lie-algebraic
techniques. Further we derive certain new and known generating relations
involving other forms of Tricomi and Bessel functions as applications.

1. Introduction

The function

(1.1) Cn(x) =
∞∑

r=0

(−1)r xr

r! (n + r)!
,

is a Bessel like function known as Tricomi function and is characterized by the
following link with the ordinary Bessel function Jn(x) [11]:

(1.2) Cn(x) = x−n/2Jn

(
2
√

x
)

or

(1.3) Jn(x) =
(x

2

)n

Cn

(x2

4

)
.

The Tricomi function Cn(x) satisfies the generating function

(1.4) exp
(
t− x

t

)
=

∞∑
n=−∞

Cn(x) tn,
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which yield the recurrences

(1.5)

d

dx
Cn(x) = −Cn+1(x),

xCn+1(x)− nCn(x) + Cn−1(x) = 0.

On combining the above recurrence relations, we get the following differential
equation satisfied by Cn(x):

(1.6)
(

x
d2

dx2
+ (n + 1)

d

dx
+ 1
)

Cn(x) = 0.

Equation (1.6) ensures that Cn(x) are eigen functions of the operator

(1.7) On(x) = − d

dx
x

d

dx
− n

d

dx
.

The above operator, whose importance has been recognized within the frame
work of theory of monomiality of Laguerre polynomials [2], can be viewed as
a generalization of the ordinary derivative so that Cn(x) can be considered as
a generalization of the ordinary exponential function, it does not possess the
semigroup property and indeed Cm(x + y) 6= Cm(x)Cm(y). This fact far from
being a limitation, allows the possibility of introducing other families of Bessel
like functions.

The study of the properties of multi-variable generalized special functions
has provided new means of analysis for the solutions of large classes of partial
differential equations often encountered in physical problems. The relevance of
the special functions in physics is well established. Most of the special functions
of mathematical physics as well as their generalizations have been suggested
by physical problems.

In order to further stress the usefulness of the generalized special functions,
Dattoli et al. [3] have introduced the three variable two parameter extension
of Tricomi functions defined as:

(1.8) Cn(x, y, z; τ1, τ2) =
∞∑

l=−∞
τ l
2 Cn−3l(x, y; τ1)Cl(z).

The generating function for 3-variable 2-parameter Tricomi functions
(3V2PTF) Cn(x, y, z; τ1, τ2) is given as:

(1.9) exp
(
t− x

t
+ t2τ1 − y

t2τ1
+ t3τ2 − z

t3τ2

)
=

∞∑
n=−∞

tnCn(x, y, z; τ1, τ2).

The 3V2PTF Cn(x, y, z; τ1, τ2) are related to the 3-variable 2-parameter
Bessel functions (3V2PBF) Jn(x, y, z; τ1, τ2) by [3]

(1.10) Cn(x, y, z; τ1, τ2) = x−n/2 Jn

(
2
√

x, 2
√

y, 2
√

z;
x√
y

τ1, τ2

√
x3

z

)
,
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or

(1.11) Jn(x, y, z; τ1, τ2) =
(x

2

)n

Cn

(
x2

4
,
y2

4
,
z2

4
;

2y

x2
τ1,

4z

x3
τ2

)
,

where Jn(x, y, z; τ1, τ2) is given by [3]

(1.12) Jn(x, y, z; τ1, τ2) =
∞∑

l=−∞
τ l
2 Jn−3l(x, y; τ1) Jl(z).

with the generating function

(1.13)

∞∑
n=−∞

Jn(x, y, z; τ1, τ2)tn

= exp
(

x

2

(
t− 1

t

)
+

y

2

(
t2τ1 − 1

t2τ1

)
+

z

2

(
t3τ2 − 1

t3τ2

))
.

The theory of special functions from the group-theoretic point of view is a
well established topic, providing a unifying formalism to deal with the immense
aggregate of the special functions and a collection of formulae such as the rele-
vant differential equations, integral representations, recurrence formulae, com-
position theorems, etc., see for example [13, 14]. The first significant advance
in the direction of obtaining generating relations by Lie-theoretic method is
made by Weisner [15-17] and Miller [10].

Within the group-theoretic context, indeed a given class of special functions
appears as a set of matrix elements of irreducible representation of a given Lie
group. The algebraic properties of the group are then reflected in the functional
and differential equations satisfied by a given family of special functions, whilst
the geometry of the homogeneous space determines the nature of the integral
representation associated with the family.

Recently some contributions related to Lie-theoretical representations of gen-
eralized Laguerre and Hermite polynomials and Bessel functions of two vari-
ables have been given, see for example Khan [7], Khan and Pathan [8] and
Khan et al. [9].

The 3-dimensional complex local Lie group T3 is the set of all 4×4 matrices
of the form

(1.14) g =




1 0 0 τ
0 e−τ 0 c
0 0 eτ b
0 0 0 1


 , b, c, τ ∈ C.
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A basis for the Lie algebra T3 = L(T3) is provided by the matrices
(1.15)

J + =




0 0 0 0
0 0 0 0
0 0 0 1
0 0 0 0


 , J− =




0 0 0 0
0 0 0 1
0 0 0 0
0 0 0 0


 , J 3 =




0 0 0 1
0 −1 0 0
0 0 1 0
0 0 0 0


 ,

with commutation relations

(1.16) [J 3, J +] = J +, [J 3, J−] = −J−, [J +, J−] = 0.

Also, the Lie algebra E3 of the Euclidean group E3 (real 3-parameter global
Lie group) has basis elements

(1.17) J1 =




0 0 1
0 0 0
0 0 0


 , J2 =




0 0 0
0 0 1
0 0 0


 , J3 =




0 −1 0
1 0 0
0 0 0


 ,

with commutation relations

(1.18) [J1, J2] = 0, [J3, J1] = J2, [J3, J2] = −J1.

Further, we observe that the complex matrices

(1.19) J +′ = −J2 + iJ1, J−
′

= J2 + iJ1, J 3′ = iJ3, (i =
√−1),

satisfy the commutation relations identical with (1.16). Thus we say that T3 is
the complexification of E3 and E3 is a real form of T3 [6]. Due to this relationship
between T3 and E3, the abstract irreducible representation Q(ω,m0) of T3 [10]
induces an irreducible representation of E3.

In this paper, we derive generating relations involving 3V2PTF Cn(x, y, z;
τ1, τ2) by using Lie-algebraic methods. In Section 2, we give a review of the
basic properties of 3V2PTF Cn(x, y, z; τ1, τ2) and their special cases. In Section
3, we derive generating relations involving 3V2PTF by using the representation
Q(ω, m0) of the Lie algebra T3. In Section 4, we obtain certain new and known
generating relations involving various forms of Tricomi and Bessel functions.
Finally, in Section 5, some concluding remarks are given.

2. Properties and special cases of 3V2PTF Cn(x, y, z; τ1, τ2)

The 3V2PTF Cn(x, y, z; τ1, τ2) defined by Eqs. (1.8), (1.9) satisfy the fol-
lowing differential and pure recurrence relations:

∂

∂x
Cn(x, y, z; τ1, τ2) = −Cn+1(x, y, z; τ1, τ2),(2.1)

∂

∂y
Cn(x, y, z; τ1, τ2) = − 1

τ1
Cn+2(x, y, z; τ1, τ2),

∂

∂z
Cn(x, y, z; τ1, τ2) = − 1

τ2
Cn+3(x, y, z; τ1, τ2),
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∂

∂τ1
Cn(x, y, z; τ1, τ2) = Cn−2(x, y, z; τ1, τ2) +

y

τ2
1

Cn+2(x, y, z; τ1, τ2),

∂

∂τ2
Cn(x, y, z; τ1, τ2) = Cn−3(x, y, z; τ1, τ2) +

z

τ2
2

Cn+3(x, y, z; τ1, τ2)

and

nCn(x, y, z; τ1, τ2) = Cn−1(x, y, z; τ1, τ2) + xCn+1(x, y, z; τ1, τ2)(2.2)

+ 2τ1Cn−2(x, y, z; τ1, τ2)

+ 3τ2Cn−3(x, y, z; τ1, τ2) +
3z

τ2
Cn+3(x, y, z; τ1, τ2).

The differential equation satisfied by 3V2PTF Cn(x, y, z; τ1, τ2) is
(2.3)(
−x

∂2

∂x2
− (1 + n)

∂

∂x
+ 2τ1

∂2

∂x∂τ1
+ 3τ2

∂2

∂x∂τ2
− 1
)

Cn(x, y, z; τ1, τ2) = 0.

We note the following special cases of 3V2PTF Cn(x, y, z; τ1, τ2):

(1)

(2.4) Cn

(
x2

4
,
y2

4
,
z2

4
;
2yτ1

x2
,
3zτ2

x3

)
=
(x

2

)−n

Jn(x, y, z; τ1, τ2),

where Jn(x, y, z; τ1, τ2) is given by Eqs. (1.12), (1.13).

(2)

(2.5) Cn

(
x2

4
,
y2

4
,
z2

4
;
2y

x2
,
4z

x3

)
=
(x

2

)−n

Jn(x, y, z),

where Jn(x, y, z) denotes 3-variable Bessel function (3VBF) defined by the
generating function [4]
(2.6)

∞∑
n=−∞

Jn(x, y, z)tn = exp
(

x

2

(
t− 1

t

)
+

y

2

(
t2 − 1

t2

)
+

z

2

(
t3 − 1

t3

))
.

(3)

(2.7) Cn (x, y, z; 1, 1) = Cn(x, y, z),

where Cn(x, y, z) denotes 3-variable Tricomi function (3VTF) defined by the
generating function

(2.8)
∞∑

n=−∞
Cn(x, y, z)tn = exp

(
t− x

t
+ t2 − y

t2
+ t3 − z

t3

)
.

(4)

(2.9) Cn

(
x, y, zτ2

2; τ1 → τ, τ2 → 0
)

= Cn(x, y; τ),
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where Cn(x, y; τ) denotes 2-variable 1-parameter Tricomi function (2V1PTF)
defined by the generating function ([3]; p. 221, Eq.(9)).

(2.10)
∞∑

n=−∞
Cn(x, y; τ)tn = exp

(
t− x

t
+ τt2 − y

τt2

)
.

(5)

(2.11) Cn

(
x2

4
,
y2

4
, zτ2

2;
2yτ

x2
, τ2 → 0

)
=
(x

2

)−n

Jn(x, y; τ),

where Jn(x, y; τ) denotes 2-variable 1-parameter Bessel functions (2V1PBF)
defined by the generating function ([4]; p. 176 Eq.(1.2))

(2.12)
∞∑

n=−∞
Jn(x, y; τ)tn = exp

(
x

2

(
t− 1

t

)
+

y

2

(
τ t2 − 1

τ t2

))
.

(6)

(2.13) Cn

(
x2

4
,
y2

4
, zτ2

2;
2y

x2
, τ2 → 0

)
=
(x

2

)−n

Jn(x, y),

where Jn(x, y) denotes 2-variable Bessel functions (2VBF) defined by the gen-
erating function ([5]; p. 24 Eq.(1.8(a)))

(2.14)
∞∑

n=−∞
Jn(x, y)tn = exp

(
x

2

(
t− 1

t

)
+

y

2

(
t2 − 1

t2

))
.

(7)

(2.15) Cn

(
x, y, zτ2

2; 1, τ2 → 0
)

= Cn(x, y),

where Cn(x, y) denotes 2-variable Tricomi functions (2VTF) defined by the
generating function

(2.16)
∞∑

n=−∞
Cn(x, y)tn = exp

(
t− x

t
+ t2 − y

t2

)
.

(8)

(2.17) Cn

(
x2

4
, yτ1

2, zτ2
2; τ1 → 0, τ2 → 0

)
=
(x

2

)−n

Jn(x),

where Jn(x) denotes ordinary Bessel function.

(9)

(2.18) Cn

(
x, yτ1

2, zτ2
2; τ1 → 0, τ2 → 0

)
= Cn(x),

where Cn(x) denotes Tricomi function defined by the generating function (1.4).
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3. Generating relations

We derive the generating relations involving 3V2PTF Cn(x, y, z; τ1 τ2 ) by
framing them into the context of the representation Q(ω, m0) of the Lie algebra
T3. We recall that Miller [10] have determined realizations of the irreducible
representation Q(ω, m0) of T3 where ω, m0 ∈ C such that ω 6= 0 and 0 ≤
Re m0 < 1. The spectrum S of this representation is the set {m0 + k : k an
integer} and the representation space V has a basis (fm)m∈S , such that

(3.1)
J3fm = mfm, J+fm = ωfm+1, J−fm = ωfm−1,

C0,0fm = (J+J−)fm = ω2fm, ω 6= 0.

The commutation relations satisfied by the operators J3, J± are

(3.2) [J3, J+] = J+, [J3, J−] = −J−, [J+, J−] = 0.

In order to find the realizations of this representation on spaces of functions
of two complex variables x and y, Miller ([10]; pp. 59–60) has taken the func-
tions fm(x, y) = Zm(x)emy, such that relations (3.1) are satisfied for all m ∈ S,
where the differential operators J3, J± are given by

(3.3)

J3 =
∂

∂y
,

J+ = ey

[
∂

∂x
− 1

x

∂

∂y

]
,

J− = e−y

[
− ∂

∂x
− 1

x

∂

∂y

]
.

In particular, we look for the functions

(3.4) fm(x, y, z, t; τ1, τ2) = Zm(x, y, z; τ1, τ2)tm,

such that

(3.5)
K3fm = mfm, K+fm = ωfm+1, K−fm = ωfm−1,

C0,0fm = (K+K−)fm = ω2fm, (ω 6= 0; m ∈ S).

The set of operators {K3,K+,K−} satisfy the commutation relations iden-
tical to (3.2).

There are numerous possible solutions of Eq. (3.5). We assume that the set
of linear differential operators {K3,K+,K−} takes the form

(3.6)

K3 = t
∂

∂t
,

K+ = t
∂

∂x
,

K− = −x

t

∂

∂x
+

2τ1

t

∂

∂τ1
+

3τ2

t

∂

∂τ2
− ∂

∂t
.

The operators in Eqs. (3.6) satisfy the commutation relations (3.2).
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In terms of the functions Zm(x, y, z; τ1, τ2) and using operators (3.6), rela-
tions (3.5) reduce to

(i)
∂

∂x
Zm(x, y, z; τ1, τ2) = ωZm+1(x, y, z; τ1, τ2),

(ii)
[
−x

∂

∂x
+ 2τ1

∂

∂τ1
+ 3τ2

∂

∂τ2
−m

]
Zm(x, y, z; τ1, τ2) = ωZm−1(x, y, z; τ1, τ2),

(iii)

(3.7)

[
−x

∂2

∂x2
+ 2τ1

∂2

∂x∂τ1
+ 3τ2

∂2

∂x∂τ2
− (m + 1)

∂

∂x

]
Zm(x, y, z; τ1, τ2)

= ω2Zm(x, y, z; τ1, τ2).

We can take ω = −1, without any loss of generality. For this choice of ω
and in terms of the functions Zm(x), relations (3.1) become ([10]; p. 60 (3.25))

(i) [
d

dx
− m

x

]
Zm(x) = −Zm+1(x),

(ii) [
d

dx
+

m

x

]
Zm(x) = Zm−1(x),

(iii)

(3.8)
[
− d2

dx2
− 1

x

d

dx
+

m2

x2

]
Zm(x) = Zm(x).

We observe that (i) and (ii) of Eqs. (3.8) agree with the conventional recurrence
relations for Bessel functions Jm(x) and (iii) coincides with the differential
equation for Jm(x). Thus we see that Zm(x) = Jm(x) is a solution of Eqs. (3.8)
for all m ∈ S.

Similarly, we see that for ω = −1, (iii) of Eqs. (3.7) coincides with the
differential equation (2.3) of 3V2PTF Cn(x, y, z; τ1, τ2). In fact, for all m ∈ S
the choice for Zm(x, y, z; τ1, τ2) = Cm(x, y, z; τ1, τ2) satisfy Eqs. (3.7). Thus we
conclude that the functions fm(x, y, z, t; τ1, τ2) = Cm(x, y, z; τ1, τ2)tm, m ∈ S
form a basis for a realization of the representation Q(−1,m0) of T3. By using
([10]; p. 18 (Theorem 1.10)), this representation of T3 can be extended to a local
multiplier representation T ([10], p. 17) of T3. Using operators (3.6), the local
multiplier representation T (g), g ∈ T3 defined on F , the space of all functions
analytic in a neighbourhood of the point (x0, y0, z0, t0, τ0

1 , τ0
2 ) = (1, 0, 0, 1, 1, 1),

takes the form

[T (exp bJ +)f ](x, y, z, t; τ1, τ2) = f

(
x

(
1 +

bt

x

)
, y, z, t; τ1, τ2

)
,(3.9)
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[T (exp cJ−)f ](x, y, z, t; τ1, τ2) = f
(
x
(
1− c

t

)
, y, z, t

(
1− c

t

)
;

τ1

(
1− c

t

)−2

, τ2

(
1− c

t

)−3
)

,

[T (exp aJ 3)f ](x, y, z, t; τ1, τ2) = f(x, y, z, tea; τ1, τ2).

If g ∈ T3 is given by Eq. (1.14), we find

T (g) = T (exp bJ +)T (exp cJ−)T (exp aJ 3)

and therefore we obtain

[T (g)f ](x, y, z, t; τ1, τ2) = f

(
x

(
1 +

bt

x

)(
1− c

t

)
, y, z, tea

(
1− c

t

)
;

(3.10)

τ1

(
1− c

t

)−2

, τ2

(
1− c

t

)−3
)

,

∣∣∣∣
bt

x

∣∣∣∣ < 1,
∣∣∣c
t

∣∣∣ < 1.

The matrix elements of T (g) with respect to the analytic basis (fm)m∈S are
the functions Alk(g) uniquely determined by Q(−1,m0) of T3 and are defined
by

(3.11)

[T (g)fm0+k](x, y, z, t; τ1, τ2)

=
∞∑

l=−∞
Alk(g)fm0+l(x, y, z, t; τ1, τ2), k = 0,±1,±2,±3, . . . .

Therefore, we prove the following result:

Theorem 3.1. The following generating equation holds

(
1− c

t

)m

Cm

(
x

(
1 +

bt

x

)(
1− c

t

)
, y, z; τ1

(
1− c

t

)−2

, τ2

(
1− c

t

)−3
)(3.12)

=
∞∑

p=−∞

(−1)|p|

|p|! b(p+|p|)/2 c(−p+|p|)/2
0F1[−; |p|+ 1; bc] Cm+p(x, y, z; τ1, τ2)tp,

∣∣∣∣
bt

x

∣∣∣∣ < 1,
∣∣∣c
t

∣∣∣ < 1.

Proof. Using (3.10), we obtain

exp(mτ)
(
1− c

t

)m

Cm

(
x

(
1 +

bt

x

)(
1− c

t

)
, y, z; τ1

(
1− c

t

)−2

, τ2

(
1− c

t

)−3
)

(3.13)

=
∞∑

l=−∞
Al,m−m0(g)Cm0+l(x, y, z; τ1, τ2)tm0+l−m
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and the matrix elements Alk(g) are given by ([10]; p. 56 (3.12)′),
(3.14)

Alk(g) = exp((m0 + k)a)(−1)|k−l|

|k − l|! b(l−k+|k−l|)/2 c(k−l+|k−l|)/2
0F1[−; |k − l|+ 1; bc],

valid for all integral values of l, k and where 0F1 denotes confluent hypergeo-
metric function [1].

Substituting the value of Alk(g) given by (3.14) into (3.13) and simplifying
we obtain result (3.12). �

Corollary 3.1. The following generating equation holds

(
1 +

r

2νt

)m

Cm

(
x

(
1 +

rνt

2x

)(
1 +

r

2νt

)
, y, z; τ1

(
1 +

r

2νt

)−2

, τ2

(
1 +

r

2νt

)−3
)

(3.15)

=
∞∑

p=−∞
(−ν)p Jp(r) Cm+p(x, y, z; τ1, τ2)tp,

∣∣∣∣
rνt

2x

∣∣∣∣ < 1,
∣∣∣ r

2νt

∣∣∣ < 1.

Proof. If bc 6= 0, we can introduce the co-ordinates r, ν such that b = rν
2 and

c = − ( r
2ν

)
, with these new co-ordinates the matrix elements (3.14) can be

expressed as

(3.16) Alk(g) = exp((m0 + k)a) (−ν)l−k Jl−k(r), k = 0,±1,±2, . . .

and generating relation (3.12) yields (3.15). �

4. Applications

We discuss some applications of the generating relations obtained in the
preceding section.

I. Taking c = 0 and t = 1 in generating relation (3.12), we get

(4.1) Cm((x + b), y, z; τ1, τ2) =
∞∑

p=0

(−b)p

p!
Cm+p(x, y, z; τ1, τ2),

∣∣∣∣
b

x

∣∣∣∣ < 1.

Again, taking b = 0 and t = 1 in generating relation (3.12), we get

(4.2)

(1− c)m Cm(x(1− c), y, z; τ1(1− c)−2, τ2(1− c)−3)

=
∞∑

p=0

cp

p!
Cm−p(x, y, z; τ1, τ2), |c| < 1.

II. Replacing x by x2

4 , y by y2

4 , z by z2

4 , τ1 by ( 2y
x2 )τ1, τ2 by ( 3z

x3 )τ2 and t

by xt
2 in generating relation (3.12) and using Eq. (2.4), we get

(1− (2c/xt)
1 + (2bt/x)

)m/2

Jm

(
x
(
1 +

2bt

x

)1/2(
1− 2c

xt

)1/2

, y, z;

(4.3)
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τ1

(
1 +

2bt

x

)(
1− 2c

xt

)−1

, τ2

(
1 +

2bt

x

)3/2(
1− 2c

xt

)−3/2)

=
∞∑

p=−∞

(−1)|p|

|p|! b(p+|p|)/2c(−p+|p|)/2
0F1[−; |p|+ 1; bc] Jm+p(x, y, z; τ1, τ2)tp,

∣∣∣∣
2bt

x

∣∣∣∣ < 1,

∣∣∣∣
2c

xt

∣∣∣∣ < 1,

where Jm(x, y, z; τ1, τ2) denotes the 3V2PBF defined by Eqs. (1.12) and (1.13).
Similarly replacing x by x2

4 , y by y2

4 , z by z2

4 , τ1 by ( 2y
x2 )τ1, τ2 by ( 3z

x3 )τ2 and t

by xt
2 in generating relation (3.15) and using Eq. (2.4), we get

(1 + (r/vxt)
1 + (rvt/x)

)m/2

Jm

(
x
(
1 +

rvt

x

)1/2(
1 +

r

vxt

)1/2

, y, z;(4.4)

τ1

(
1 +

rvt

x

)(
1 +

r

vxt

)−1

, τ2

(
1 +

rvt

x

)3/2(
1 +

r

vxt

)−3/2)

=
∞∑

p=−∞
(−v)pJp(r)Jm+p(x, y, z; τ1, τ2)tp,

∣∣∣rvt

x

∣∣∣ < 1,
∣∣∣ r

vxt

∣∣∣ < 1.

Further, taking t = τ1 = τ2 = 1 and b = −c in generating relation (4.3), we
get

Jm

(
x

(
1− 2c

x

)
, y, z

)
(4.5)

=
∞∑

p=−∞

(−1)3(|p|+p)/2

|p|! c(|p|)
0F1[−; |p|+ 1;−c2] Jm+p(x, y, z),

∣∣∣∣
2c

x

∣∣∣∣ < 1,

where Jm(x, y, z) denotes 3VBF given by Eq. (2.6).

Similar result can be obtained from generating relation (4.4).

III. Replacing z by zτ2
2, τ1 by τ and then taking τ2 → 0 in generating

relation (3.12) and using Eq. (2.9), we get

(
1− c

t

)m

Cm

(
x

(
1 +

bt

x

)(
1− c

t

)
, y; τ

(
1− c

t

)−2
)

(4.6)

=
∞∑

p=−∞

(−1)|p|

|p|! b(p+|p|)/2c(−p+|p|)/2
0F1[−; |p|+ 1; bc] Cm+p(x, y; τ)tp,

∣∣∣∣
bt

x

∣∣∣∣ < 1,
∣∣∣c
t

∣∣∣ < 1,

where Cm(x, y; τ) denotes 2V1PTF given by Eq. (2.10).
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Further, replacing x by x2

4 , y by y2

4 , τ by 2yτ
x2 and t by xt

2 in generating
relation (4.6), we get

(
1− (2c/xt)
1 + (2bt/x)

)m/2

Jm

(
x

(
1 +

2bt

x

)1/2(
1− 2c

xt

)1/2

, y; τ
(

1 +
2bt

x

)(
1− 2c

xt

)−1
)(4.7)

=
∞∑

p=−∞

(−1)|p|

|p|! b(p+|p|)/2 c(−p+|p|)/2
0F1[−; |p|+ 1; bc] Jm+p(x, y; τ)tp,

∣∣∣∣
2bt

x

∣∣∣∣ < 1,

∣∣∣∣
2c

xt

∣∣∣∣ < 1,

where Jm(x, y; τ) denotes 2V1PBF given by Eq. (2.12).

Further, taking t = τ = 1 and b = −c in generating relation (4.7), we get

Jm

(
x

(
1− 2c

x

)
, y

)
(4.8)

=
∞∑

p=−∞

(−1)3(|p|+p)/2

|p|! c(|p|)
0F1[−; |p|+ 1;−c2] Jm+p(x, y),

∣∣∣∣
2c

x

∣∣∣∣ < 1,

where Jm(x, y) denotes 2VBF given by Eq. (2.14).

Similar results can be obtained from generating relation (3.15).

IV. Replacing y by yτ1
2 , z by zτ2

2 and then taking τ1, τ2 → 0 in generating
relations (3.12) and (3.15) and using Eq. (2.18), we get

(
1− c

t

)m

Cm

(
x

(
1 +

bt

x

)(
1− c

t

))
(4.9)

=
∞∑

p=−∞

(−1)|p|

|p|! b(p+|p|)/2c(−p+|p|)/2
0F1[−; |p|+ 1; bc]Cm+p(x)tp,

∣∣∣∣
bt

x

∣∣∣∣ < 1,
∣∣∣c
t

∣∣∣ < 1

and
(
1 +

r

2νt

)m

Cm

(
x

(
1 +

rνt

2x

)(
1 +

r

2νt

))
(4.10)

=
∞∑

p=−∞
(−ν)pJp(r)Cm+p(x)tp,

∣∣∣∣
rνt

2x

∣∣∣∣ < 1,
∣∣∣ r

2νt

∣∣∣ < 1,

respectively, where Cm(x) denotes Tricomi function given by Eqs. (1.1) and
(1.4).
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Further, replacing x by z2/4, t by zt/2 in generating relation (4.9) and using
Eq. (1.3), we obtain ([10]; p.62(3.29)), for Zm = Jm)

( (
1− 2c

zt

)
(
1 + 2bt

z

)
)m/2

Jm

(
z

(
1 +

2bt

z

)1/2(
1− 2c

zt

)1/2
)

(4.11)

=
∞∑

p=−∞

(−1)|p|

|p|! b(p+|p|)/2c(−p+|p|)/2
0F1[−; |p|+ 1; bc] Jm+p(z)tp,

∣∣∣∣
2bt

z

∣∣∣∣ < 1,

∣∣∣∣
2c

zt

∣∣∣∣ < 1.

Several of the fundamental identities for cylindrical functions are special
cases of generating relation (4.11). Also, for c = 0, t = 1 and b = 0, t = 1,
relation (4.11) gives the formulas of Lommel ([10]; p. 62 (3.30) and (3.31) for
Zm = Jm).

Again, replacing x by z2/4, t by z/2 in generating relation (4.10) and
using Eq.(1.3), we obtain a generalization of Graf’s addition theorem ([10];
p. 63 (3.32), for Zm = Jm)

((
1 + r

νz

)
(
1 + rν

z

)
)m/2

Jm

(
z
(
1 +

rν

z

)1/2 (
1 +

r

νz

)1/2
)

(4.12)

=
∞∑

p=−∞
(−ν)p Jp(r)Jm+p(z),

∣∣∣rν
z

∣∣∣ < 1,
∣∣∣ r

νz

∣∣∣ < 1.

Further, taking c = 0, t = 1 and replacing x by x2/4 and b by −xt/2 in
relation (4.9) and using Eq. (1.3), we get a well known generating relation
([12]; p. 427, Eq. (56)).

(4.13)
∞∑

p=0

tp

p!
Jm+p(x) =

(
x

x− 2t

)m/2

Jm

(√
x2 − 2xt

)
, m ∈ C

5. Concluding remarks

We note that the expressions (3.11) are valid only for group elements g in
a sufficiently small neighbourhood of the identity element of the Lie group
T3. However, we can also use operators (3.6) to derive generating relations for
3V2PTF and related functions with group elements bounded away from the
identity.

If f(x, y, z, t; τ1, τ2) is a solution of the equation C0,0f = ω2f , i.e.,
(
−x

∂2

∂x2
+ 2τ1

∂2

∂x∂τ1
+ 3τ2

∂2

∂x∂τ2
− (m + 1)

∂

∂x

)
f(x, y, z, t; τ1, τ2)(5.1)

= ω2f(x, y, z, t; τ1, τ2),
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then the function T (g)f given by (3.10) satisfies the equation

C0,0(T (g)f) = ω2(T (g)f).

This follows from the fact that C0,0 commutes with the operators K+,K−

and K3. Now if f is a solution of the equation

(5.2) (x1K
+ + x2K

− + x3K
3)f(x, y, z, t; τ1, τ2) = λf(x, y, z, t; τ1, τ2)

for constants x1, x2, x3 and λ, then T (g)f is a solution of the equation

(5.3) [T (g)(x1K
+ + x2K

− + x3K
3)T (g−1)][T (g)f ] = λ[T (g)f ].

The inner automorphism µg of Lie group T3 defined by

(5.4) µg(h) = ghg−1, h ∈ T3,

induces an automorphism µ?
g of Lie algebra T3 where

µ?
g(α) = gαg−1, α ∈ T3.

If α = x1J + +x2J−+x3J 3, where J +,J− and J 3 are given by Eq. (1.15)
and g is given by Eq. (1.14), then we have

(5.5) µ?
g(α) = (x1e

a − bx3)J + + (x2e
−a + cx3)J− + x3J 3,

as a consequence of which, we can write
(5.6)
T (g)(x1K

++x2K
−+x3K

3)T (g−1)=(x1e
a−bx3)K++(x2e

−a+cx3)K−+x3K
3.

To give an example of the application of these remarks, we consider the
function f(x, y, z, t; τ1, τ2) = Cm(x, y, z; τ1, τ2)tm, m ∈ C. Since C0,0f = f and
K3f = mf , so the function

[T (g)f ](x, y, z, t; τ1, τ2)(5.7)

= ema(t− c)mCm

(
(x + bt)

(
1− c

t

)
, y, z; τ1

(
1− c

t

)−2

, τ2

(
1− c

t

)−3
)

,

satisfies the equations

(5.8) C0,0[T (g)f ] = [T (g)f ],

(5.9) (−bK+ + cK− + K3)[T (g)f ] = m[T (g)f ].

For a = b = 0 and c = −1, we can express the function (5.7) in the form

h(x, y, z, t; τ1, τ2)(5.10)

= (t + 1)m Cm

((
x +

x

t

)
, y, z; τ1

(
1 +

1
t

)−2

, τ2

(
1 +

1
t

)−3
)

, |t| < 1.

Now using the Laurent expansion

h(x, y, z, t; τ1, τ2) =
∞∑

k=−∞
hk(x, y, z; τ1, τ2)tk, |t| < 1,
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in Eq. (5.8), we note that hk(x, y, z; τ1, τ2) is a solution of differential equation
(2.3) for each integer k. Since the function h(x, y, z, t; τ1, τ2) is bounded for
x = y = z = 0, we have

hk(x, y, z; τ1, τ2) = ckCk(x, y, z; τ1, τ2), ck ∈ C.

Thus

(5.11) hk(x, y, z, t; τ1, τ2) =
∞∑

k=−∞
ck Ck(x, y, z; τ1, τ2)tk.

Now from Eq. (5.9), we have

(−K− + K3)h(x, y, z, t; τ1, τ2) = mh(x, y, z, t; τ1, τ2)

and therefore it follows that

ck+1 = (m− k)ck.

Further taking x = y = z = 0 in (5.10) and using (5.11), we get c0 =
1/Γ(m + 1) and hence ck = 1/Γ(m − k + 1). Thus we obtain the following
result:

(t + 1)m Cm

((
x +

x

t

)
, y, z; τ1

(
1 +

1
t

)−2

, τ2

(
1 +

1
t

)−3
)

(5.12)

=
∞∑

k=−∞

Ck(x, y, z; τ1, τ2)tk

Γ(m− k + 1)
, |t| < 1,

which is obviously not a special case of generating relation (3.12).

Several other examples of generating relations can be derived by this method,
see for example Weisner [17].

We have considered 3V2PTF Cm(x, y, z; τ1, τ2) within the group representa-
tion formalism. These functions appeared as basis functions for a realization of
the representation Q(−1, m0) of the Lie algebra T3. The analysis presented in
this paper confirms the possibility of extending this approach to other useful
forms of generalized Tricomi functions as well as to their Bessel counter parts.
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