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POLYNOMIAL FACTORIZATION THROUGH Lr(µ) SPACES

Raffaella Cilia and Joaqúın M. Gutiérrez

Abstract. We give conditions so that a polynomial be factorable throu-
gh an Lr(µ) space. Among them, we prove that, given a Banach space X
and an index m, every absolutely summing operator on X is 1-factorable
if and only if every 1-dominated m-homogeneous polynomial on X is right
1-factorable, if and only if every 1-dominated m-homogeneous polynomial
on X is left 1-factorable. As a consequence, if X has local unconditional
structure, then every 1-dominated homogeneous polynomial on X is right
and left 1-factorable.

We give conditions so that a homogeneous polynomial P between Banach
spaces be factorable through an Lr(µ)-space, either in the form P = Q ◦ T ,
where T is a (linear) operator and Q is a polynomial (right r-factorization), or
in the form P = T ◦Q (left r-factorization).

It is shown in particular that, given a Banach space X and an index m,
every absolutely summing operator on X is 1-factorable if and only if every 1-
dominated m-homogeneous polynomial on X is right 1-factorable, if and only
if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As
a consequence, if X has local unconditional structure, then every 1-dominated
m-homogeneous polynomial on X is right and left 1-factorable.

Throughout, X, Y , Z denote Banach spaces, X∗ is the dual of X, and BX

stands for its closed unit ball. The closed unit ball BX∗ will always be endowed
with the weak-star topology. By N we represent the set of all natural numbers,
and by K the scalar field (real or complex). We use the symbol L(X, Y ) for
the space of all (linear bounded) operators from X into Y endowed with the
operator norm. Given a space Y we shall denote by kY the natural embedding
of Y into its bidual Y ∗∗.

Given m ∈ N, we denote by P(mX, Y ) the space of all m-homogeneous
(continuous) polynomials from X into Y endowed with the supremum norm.
Recall that with each P ∈ P(mX, Y ) we can associate a unique symmetric
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m-linear mapping P̂ : X× (m). . . ×X → Y so that

P (x) = P̂
(
x, (m). . . , x

)
(x ∈ X)

and we have

‖P‖ ≤
∥∥∥P̂
∥∥∥ ≤ mm

m!
‖P‖ .

Given a polynomial P ∈ P(mX, Y ), its derivative is the polynomial

dP ∈ P(m−1X,L(X, Y ))

defined by

dP (x)(y) = mP̂
(
x, (m−1). . . , x, y

)
(x, y ∈ X) .

For the general theory of multilinear mappings and polynomials on Banach
spaces, we refer the reader to [14] and [20].

We use the notation ⊗mX := X⊗ (m). . . ⊗X for the m-fold tensor product of
X, and X⊗πY (respectively, X⊗εY ) for the completed projective (respectively,
injective) tensor product of X and Y (see [13] or [11] for the theory of tensor
products).

By ⊗m
s X := X⊗s

(m). . . ⊗sX we denote the m-fold symmetric tensor product
of X, that is, the set of all elements u ∈ ⊗mX of the form

u =
n∑

j=1

λjxj⊗ (m). . . ⊗xj (n ∈ N, λj ∈ K, xj ∈ X, 1 ≤ j ≤ n).

By ⊗m
π,sX (respectively, ⊗m

ε,sX) we represent the space ⊗m
s X endowed with

the topology induced by that of ⊗m
π X (respectively, ⊗m

ε X).
Given an operator T ∈ L(X, Y ), we denote by

⊗mT : ⊗m
π X −→ ⊗m

π Y

the operator defined by

⊗mT (x1 ⊗ · · · ⊗ xm) := T (x)⊗ · · · ⊗ T (xm) (x1, . . . , xm ∈ X) .

If A : X1 × · · · ×Xm → Y is an m-linear mapping, the linearization of A is
the operator

A : X1 ⊗π · · · ⊗π Xm −→ Y

given by

A




n∑

j=1

x1,j ⊗ · · · ⊗ xm,j


 =

n∑

j=1

A(x1,j , . . . , xm,j)

for all xk,j ∈ Xk (1 ≤ k ≤ m, 1 ≤ j ≤ n) [21, p. 24]. Moreover, ‖A‖ =
∥∥A
∥∥

[15, 2.1].
For a polynomial P ∈ P(mX, Y ), its linearization

P : ⊗m
π,sX −→ Y
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is the operator given by

P




n∑

j=1

λjxj⊗ (m). . . ⊗xj


 =

n∑

j=1

λjP (xj)

for all xj ∈ X and λj ∈ K (1 ≤ j ≤ n).
By δm : X → ⊗m

π X we denote the canonical polynomial given by

δm(x) := x⊗ (m). . . ⊗x (x ∈ X) .

Given 1 ≤ r < ∞, a polynomial P ∈ P(mX, Y ) is r-dominated (see, e.g.,
[19]) if there exists a constant k > 0 such that, for all n ∈ N and (xi)n

i=1 ⊂ X,
we have (

n∑

i=1

‖P (xi)‖
r
m

)m
r

≤ k sup
x∗∈BX∗

(
n∑

i=1

|x∗(xi)|r
)m

r

.

The infimum of the constants k that verify this definition is called the r-
dominated quasinorm of P and will be denoted by ‖P‖r-d (it is a norm if and
only if r ≥ m).

Note that, for m = 1, we obtain the ideal (Πr, πr) of (absolutely) r-summing
operators. If m = 1 and r = 1, we obtain the class of absolutely summing
operators.

A polynomial P ∈ P(mX, Y ) is integral [1] if there exists a regular countably
additive, Y ∗∗-valued Borel measure G of bounded variation on BX∗ such that

P (x) =
∫

BX∗
[x∗(x)]m dG(x∗) (x ∈ X) .

A polynomial P ∈ P(mX, Y ) is nuclear [1] if it can be written in the form

P (x) =
∞∑

i=1

x∗i (x)m
yi (x ∈ X),

where (x∗i ) ⊂ X∗ and (yi) ⊂ Y are bounded sequences such that
∞∑

i=1

‖x∗i ‖m‖yi‖ < ∞ .

It is well known that every nuclear polynomial is integral.
The definition of ideal of polynomials may be seen, for instance, in [5].
For the notion and main properties of Lp-spaces (1 ≤ p ≤ ∞), we refer the

reader to [17].

Definition 1 ([5]). Let Q be an ideal of polynomials. We say that
(a) Q is closed under differentiation if, for every m ∈ N, all Banach spaces

X and Y , and every polynomial P ∈ Q(mX, Y ), we have dP (a) ∈ Q(X, Y ) for
every a ∈ X;
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(b)Q is closed for scalar multiplication if, for every m ∈ N, all Banach spaces
X and Y , and every polynomial P ∈ Q(mX, Y ), we have φP ∈ Q(m+1X, Y )
for every φ ∈ X∗.

Definition 2 ([10]). Given a polynomial P ∈ P(mX,Y ) and 1 ≤ r ≤ ∞, we
say that P is left r-factorable if there exist a positive measure space (Ω, Σ, µ),
a polynomial Q ∈ P(mX,Lr(µ)), and an operator T ∈ L(Lr(µ), Y ∗∗) such that
kY ◦ P = T ◦Q.

X
P−−−−→ Y

Q

y
ykY

Lr(µ) −−−−→
T

Y ∗∗

In this case we set

γleft
r (P ) := inf{‖Q‖‖T‖ for Q, T as above} .

We denote by Pm,left
r (X, Y ) the subspace of all P ∈ P(mX,Y ) which are left

r-factorable.

Definition 3 ([10]). Given a polynomial P ∈ P(mX,Y ) and 1 ≤ r ≤ ∞, we
say that P is right r-factorable if there exist a positive measure space (Ω, Σ, µ),
a polynomial Q ∈ P(mLr(µ), Y ∗∗), and an operator T ∈ L(X, Lr(µ)) such that
kY ◦ P = Q ◦ T .

X
P−−−−→ Y

T

y
ykY

Lr(µ) −−−−→
Q

Y ∗∗

In this case we set

γright
r (P ) := inf{‖Q‖‖T‖m for Q, T as above} .

We denote by Pm,right
r (X, Y ) the subspace of all P ∈ P(mX, Y ) which are right

r-factorable.

Recall [12, Chapter 7] that an operator T ∈ L(X,Y ) is r-factorable if there
exist a measure space (Ω,Σ, µ) and operators b : Lr(µ) → Y ∗∗ and a : X →
Lr(µ) such that kY ◦ T = b ◦ a.

In this case, we write
γr(T ) := inf ‖a‖ ‖b‖ ,

where the infimum extends over all factorizations of T as above; γr is a norm
on the space Γr(X, Y ) of all r-factorable operators from X into Y .

Proposition 4. If a polynomial P ∈ P(mX,Y ) is right 1-factorable, then it is
also left 1-factorable, and

γleft
1 (P ) ≤ mm

m!
γright
1 (P ) .
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Proof. There exist a positive measure space (Ω,Σ, µ), a polynomial

Q ∈ P(mL1(µ), Y ∗∗) ,

and an operator T ∈ L(X, L1(µ)) such that kY ◦ P = Q ◦ T .

X
P−−−−→ Y

T

y
ykY

L1(µ) −−−−→
Q

Y ∗∗

Using the polarization formula [20, Theorem 1.10], we have for x1, . . . , xm ∈ X:

kY ◦ P̂ (x1, · · · , xm) = kY




1
m!2m

∑
εj=±1
1≤j≤m

ε1 · · · εmP (ε1x1 + · · ·+ εmxm)




=
1

m!2m

∑
εj=±1
1≤j≤m

ε1 · · · εmkY ◦ P (ε1x1 + · · ·+ εmxm)

=
1

m!2m

∑
εj=±1
1≤j≤m

ε1 · · · εmQ ◦ T (ε1x1 + · · ·+ εmxm)

=
1

m!2m

∑
εj=±1
1≤j≤m

ε1 · · · εmQ(ε1T (x1) + · · ·+ εmT (xm))

= Q̂(T (x1), . . . , T (xm))

= Q̂(T, (m). . . , T )(x1, . . . , xm) .

It follows that
kY ◦ P̂ = Q̂ ◦ (⊗mT ) .

Therefore (see the diagram below)

kY ◦ P = kY ◦ P = kY ◦ P̂ ◦ i = Q̂ ◦ (⊗mT ) ◦ i ,

where i denotes the natural inclusion of ⊗m
π,sX into ⊗m

π X.

⊗m
π,sX

kY ◦P−−−−→ Y ∗∗

i

y
x bQ

⊗m
π X −−−−→

⊗mT
⊗m

π L1(µ)

Since ⊗m
π L1(µ) is an L1(µ′) space [22, Exercise 2.8], P is 1-factorable. Then

P = P ◦ δm is left 1-factorable. Moreover, from the equality

kY ◦ P = kY ◦ P ◦ δm = Q̂ ◦ (⊗mT ) ◦ i ◦ δm ,
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we have

γleft
1 (P ) ≤ ‖δm‖

∥∥∥Q̂ ◦ (⊗mT ) ◦ i
∥∥∥

≤
∥∥∥Q̂
∥∥∥ ‖T‖m [11, Ex 3.2]

=
∥∥∥Q̂
∥∥∥ ‖T‖m

≤ mm

m!
‖Q‖ ‖T‖m

.

Since the factorization kY ◦ P = Q ◦ T is arbitrary, we get

γleft
1 (P ) ≤ mm

m!
γright
1 (P ) ,

and the proof is finished. �
Remark 5.

(a) There are many left 1-factorable polynomials that are not right 1-factor-
able. Indeed, it is proved in [10, Theorem 2.3] that every integral polynomial
is left 1-factorable so, in particular, a nuclear polynomial is left 1-factorable;
however, there are many nuclear polynomials that are not right 1-factorable
[10, Propositions 5.8 and 5.9].

(b) The polynomial Q ∈ P(2`2, `1) defined by Q(x) := (x2
k)k is obviously

left 1-factorable, but it is not integral (otherwise, it would be compact). More-
over, it is right 2-factorable (and then right r-factorable for every r > 1 [12,
Corollary 9.2]), but it is not left 2-factorable: indeed, this would imply that Q
is compact.

Given an operator ideal A, a polynomial P ∈ P(mX, Y ) is said to be of
type PL[A] if there exist a Banach space Z, an operator T ∈ A(X, Z), and a
polynomial Q ∈ P(mZ, Y ) such that P = Q ◦ T [4].

Theorem 6. Let A be an operator ideal, and let 1 ≤ r ≤ ∞. Let X be a
Banach space. Consider the following statements:

(a) for every Banach space Y , A(X, Y ) ⊆ Γr(X, Y );
(b) for every Banach space Y and for every index m ≥ 2, PL[A](mX,Y ) ⊆

Pm,right
r (X,Y );

(c) there exists an index m ≥ 2 such that, for every Banach space Y ,

PL[A](mX,Y ) ⊆ Pm,right
r (X,Y );

(d) for every Banach space Y and for every index m ≥ 2,

PL[A](mX,Y ) ⊆ Pm,left
r (X, Y );

(e) there exists an index m ≥ 2 such that, for every Banach space Y ,

PL[A](mX,Y ) ⊆ Pm,left
r (X, Y ).

Then, (d) ⇒ (e) ⇒ (a) ⇔ (b) ⇔ (c). Moreover, if r = 1, all the statements
are equivalent.
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Proof. (a) ⇒ (b). Given m ∈ N (m ≥ 2) and a Banach space Y , let P ∈
PL[A](mX, Y ). By [5, Proposition 1], P ∈ PL[Γr ](mX, Y ). Then there exist a
Banach space Z, an operator T ∈ Γr(X, Z), and a polynomial Q ∈ P(mZ, Y )
such that P = Q ◦ T . Since T is r-factorable, there exist a measure space
(Ω, Σ, µ) and operators A ∈ L(X, Lr(µ)), B ∈ L(Lr(µ), Z∗∗) such that kZ ◦T =
B ◦A. Moreover, γr(T ) ≤ ‖B‖‖A‖. Let Q̃ be the Aron-Berner extension of Q
[2] (see also [16]). We have (see Figure 1)

kY ◦ P = kY ◦Q ◦ T = Q̃ ◦ kZ ◦ T = Q̃ ◦B ◦A .

Y

X Z Y ∗∗

Lr(µ) Z∗∗ PTQkYABkZ
eQ

Figure 1. Factorization of kY ◦ P

So P is right r-factorable.
(b) ⇒ (c). It is obvious.
(c) ⇒ (a). We show that the ideal Pm,right

r is closed under differentiation.
Indeed, let P ∈ Pm,right

r (X, Y ). Fix a ∈ X. We have to prove that dP (a) is
r-factorable. Clearly, kY ◦dP (a) = d(kY ◦P )(a). By our hypothesis, there exist
a positive measure space (Ω, Σ, µ), a polynomial Q ∈ P(mLr(µ), Y ∗∗), and an
operator T ∈ L(X, Lr(µ)) such that kY ◦ P = Q ◦ T .

X
P−−−−→ Y

T

y
ykY

Lr(µ) −−−−→
Q

Y ∗∗

Define the operator A : Lr(µ) → Y ∗∗ by

A(z) = Q̂(T (a), (m−1). . . , T (a), z) (z ∈ Lr(µ)) .
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In particular, for every x ∈ X,

A(T (x)) = Q̂(T (a), (m−1). . . , T (a), T (x))

= k̂Y ◦ P (a, (m−1). . . , a, x)

=
1
m

d(kY ◦ P )(a)(x)

=
1
m

kY ◦ dP (a)(x) .

Hence

1
m

kY ◦ dP (a) = A ◦ T ,

and dP (a) is r-factorable. Since the ideal PL[A] is closed for scalar multiplica-
tion [5, Lemma 1], (a) follows from [5, Proposition 2].

(d) ⇒ (e). It is obvious.
(e) ⇒ (a). Let T ∈ A(X,Y ). Let x0 ∈ X and y0 = T (x0) 6= 0. Choose

y∗ ∈ Y ∗ such that y∗(y0) = 1. Let x∗ = T ∗(y∗). So x∗(x0) = 1. For every
1 ≤ j ≤ m − 1, we introduce the operators πj : ⊗j+1

π,s X → ⊗j
π,sX and π′j :

⊗j+1
π,s Y → ⊗j

π,sY , given in [3] by

πj

(
r∑

i=1

λixi⊗ (j+1). . . ⊗xi

)

=
r∑

i=1

λix
∗(xi)xi⊗ (j). . . ⊗xi (λi ∈ K, xi ∈ X, 1 ≤ i ≤ r)

and

π′j

(
r∑

i=1

λiyi⊗ (j+1). . . ⊗yi

)

=
r∑

i=1

λiy
∗(yi)yi⊗ (j). . . ⊗yi (λi ∈ K, yi ∈ Y, 1 ≤ i ≤ r) .

Consider the polynomials

P := T ◦ π1 ◦ · · · ◦ πm−1 ◦ δm ∈ P(mX, Y )

and

Q := π′1 ◦ · · · ◦ π′m−1 ◦ δ′m ◦ T ∈ P(mX, Y ) ,
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where δm : X → ⊗m
π,sX and δ′m : Y → ⊗m

π,sY are the canonical polynomials.
We have P = Q. Indeed, for x ∈ X,

P (x) = T ◦ π1 ◦ · · · ◦ πm−1 ◦ δm(x)

= T ◦ π1 ◦ · · · ◦ πm−1

(
x⊗ (m). . . ⊗x

)

= [x∗(x)]T ◦ π1 ◦ · · · ◦ πm−2

(
x⊗ (m−1). . . ⊗x

)

= · · ·
= T (x)[x∗(x)]m−1 .

On the other hand,

Q(x) = π′1 ◦ · · · ◦ π′m−1 ◦ δ′m ◦ T (x)

= π′1 ◦ · · · ◦ π′m−1

(
T (x)⊗ (m). . . ⊗T (x)

)

= y∗(T (x))π′1 ◦ · · · ◦ π′m−2

(
T (x)⊗ (m−1). . . ⊗T (x)

)

= · · ·
= [y∗(T (x))]m−1T (x)

= [x∗(x)]m−1T (x) .

Hence P = T ◦π1 ◦ · · ·◦πm−1 ◦δm ∈ PL[A](mX, Y ) and then, by our hypothesis,
it is left r-factorable. So its linearization T ◦π1 ◦ · · · ◦πm−1 is also r-factorable.
Now, for every 1 ≤ p ≤ m − 1, let jp : ⊗p

π,sX → ⊗p+1
π,s X be the operator [3,

page 168] such that πp ◦ jp is the identity on ⊗p
π,sX. It follows that

T = T ◦ π1 ◦ · · · ◦ πm−1 ◦ jm−1 ◦ · · · ◦ j1

is r-factorable.
If r = 1, the statements are equivalent since (b) ⇒ (d) follows from Propo-

sition 4. �

Remark 7. If r > 1, the assertions of Theorem 6 are not equivalent. In-
deed, the polynomial Q ∈ P(m`2, `1), given by Q(x) := (xm

n )∞n=1, belongs to
PL[Γ2](

m`2, `1). If A := Γ2, Theorem 6(a) is satisfied, but Q /∈ Pm,left
2 (`2, `1),

by Remark 5(b).

Corollary 8. Let X be a Banach space, and let 1 ≤ r < ∞. Consider the
following assertions:

(a) for every Banach space Y , every r-summing operator T : X → Y is
r-factorable;

(b) for every Banach space Y , for every m ∈ N (m ≥ 2), every r-dominated
polynomial P ∈ P(mX, Y ) is right r-factorable;

(c) there exists m ∈ N (m ≥ 2) such that, for every Banach space Y , every
r-dominated polynomial P ∈ P(mX,Y ) is right r-factorable;
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(d) for every Banach space Y , for every m ∈ N (m ≥ 2), every r-dominated
polynomial P ∈ P(mX, Y ) is left r-factorable;

(e) there exists m ∈ N (m ≥ 2) such that, for every Banach space Y , every
r-dominated polynomial P ∈ P(mX,Y ) is left r-factorable.

Then (d) ⇒ (e) ⇒ (a) ⇔ (b) ⇔ (c). If r = 1, all the assertions are equivalent.

Proof. The result follows from Theorem 6 since the ideal of r-dominated poly-
nomials coincides with PL[Πr] (see, for instance, [8, Theorem 5] or [7, Theo-
rem 5]). �

Given a Banach space X, let FX denote the collection of all finite dimen-
sional subspaces of X. We say that X has local unconditional structure (l.u.st.,
for short) [12, Chapter 17] if there is a constant Λ ≥ 1 such that, for all E ∈ FX ,
the canonical embedding E ↪→ X has a factorization E

v−→ Y
u−→ X, through

a Banach space Y with unconditional basis; u and v are operators satisfying
‖u‖ ‖v‖ub(Y ) ≤ Λ, where ub(Y ) is the unconditional basis constant of Y . The
smallest of all such Λ’s is called the l.u.st. constant of X, and is denoted by
Λ(X).

Every Lp-space (1 ≤ p ≤ ∞) and every Banach lattice have local uncondi-
tional structure [12, Theorem 17.1].

In the following lemma, the factorization result is well known (see [8, Theo-
rem 5] or [7, Theorem 5]). We are interested here in the equality of the norms.

Lemma 9. A polynomial P ∈ P(mX, Y ) is r-dominated if and only if there
are a Banach space Z, an r-summing operator T ∈ L(X, Z), and a polynomial
Q ∈ P(mZ, Y ) such that P = Q ◦ T . Moreover,

‖P‖r-d = inf{‖Q‖πr(T )m : Q,T as above} .

Proof. Let P be r-dominated. We know that it admits a factorization P = Q◦T
as in the statement. For every n ∈ N and all x1, . . . , xn ∈ X, we have

(
n∑

i=1

‖P (xi)‖r/m

)m
r

=

(
n∑

i=1

‖QT (xi)‖r/m

)m
r

≤
[

n∑

i=1

(‖Q‖ ‖T (xi)‖m)
r
m

]m
r

= ‖Q‖
(

n∑

i=1

‖T (xi)‖r

)m
r

≤ ‖Q‖ sup
x∗∈BX∗

(
n∑

i=1

|x∗(xi)|r
)m

r

πr(T )m .

Hence,
‖P‖r-d ≤ ‖Q‖πr(T )m .
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Given ε > 0, by [18, Proposition 3.1], there are a constant Cε > 0 with

Cε < ‖P‖r-d + ε

and a regular Borel probability measure µε on BX∗ such that

‖P (x)‖ ≤ Cε

[∫

BX∗
|x∗(x)|r dµε(x∗)

]m
r

(x ∈ X) .

Let T0 : X → Lr (BX∗ , µε) be the operator given by

T0(x)(x∗) := x∗(x) (x ∈ X, x∗ ∈ BX∗) .

Since, for x ∈ X,

‖T0(x)‖ =
[∫

BX∗
|T0(x)(x∗)|r dµε(x∗)

] 1
r

=
[∫

BX∗
|x∗(x)|r dµε(x∗)

] 1
r

(1)

≤ ‖x‖ ,

T0 is continuous. Let Zε := T0(X), that is, the closure of T0(X) in Lr (BX∗ , µε).
Let

Tε : X −→ Zε

be the operator defined by Tε(x) := T0(x) for all x ∈ X. By (1), Tε is r-summing
[12, Theorem 2.12], and πr(Tε) ≤ 1. Define a polynomial Q0 : T0(X) → Y by

Q0(T0(x)) := P (x) .

We have

‖Q0T0(x)‖ = ‖P (x)‖

≤ Cε

[∫

BX∗
|x∗(x)|r dµε(x∗)

]m
r

= Cε ‖T0(x)‖m
,

so Q0 is continuous with ‖Q0‖ ≤ Cε. Let Qε be the continuous extension of
Q0 to Zε with ‖Qε‖ = ‖Q0‖. Then P = Qε ◦ Tε, with Tε r-summing, and

‖Qε‖πr(Tε)m ≤ ‖Q0‖ ≤ Cε < ‖P‖r-d + ε ,

and the proof is finished. �

Corollary 10. Let X be a Banach space with l.u.st. Then, for every Banach
space Y and every index m ≥ 2, every 1-dominated polynomial P ∈ P(mX, Y )
is right 1-factorable, with γright

1 (P ) ≤ Λ(X)m‖P‖1-d.
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Proof. By Lemma 9, there exist a Banach space Z, an absolutely summing
operator T ∈ L(X,Z) and a polynomial Q ∈ P(mZ, Y ) such that P = Q ◦ T .
Since X has l.u.st., T is 1-factorable [12, 17.7], so there exist a measure space
(Ω, Σ, µ) and operators A ∈ L(X,L1(µ)), B ∈ L(L1(µ), Z∗∗) such that kZ ◦T =
B ◦A. Moreover, γ1(T ) ≤ Λ(X)π1(T ) [12, 17.7]. As in the proof of Theorem 6
(see Figure 1, with r = 1), using the Aron-Berner extension Q̃ of Q, we have

kY ◦ P = kY ◦Q ◦ T = Q̃ ◦B ◦A .

So P is right 1-factorable. Moreover, we observe that

γright
1 (P ) ≤ ‖A‖m

∥∥∥Q̃ ◦B
∥∥∥ ≤ ‖Q‖‖A‖m‖‖B‖m ,

where we have used the equality
∥∥∥Q̃
∥∥∥ = ‖Q‖ [6, Proposition 1.3]. Taking the

infimum over A and B such that kZ ◦ T = B ◦A, we have

γright
1 (P ) ≤ ‖Q‖γ1(T )m ≤ ‖Q‖Λ(X)mπ1(T )m .

Taking again the infimum over Q and T such that P = Q ◦T , by Lemma 9, we
obtain

γright
1 (P ) ≤ Λ(X)m‖P‖1-d ,

and the proof is finished. �

Remark 11. The assertion (a) in Corollary 8 holds in particular:
(a) for every Banach space X when r = 2 [12, Corollary 2.16];
(b) if X is an Lp-space, with 1 ≤ p ≤ 2, and 1 < r < 2 since, in this

case, every r-summing operator is also r-integral [12, Corollary 6.19], and then
r-factorable;

(c) if X is a C(K) space, for every 1 ≤ r < ∞, since in this case, every r-
summing operator is also r-integral [12, Corollary 5.8], and then r-factorable.

Remark 12. Every m-homogeneous integral polynomial on a C(K) space is
right m-factorable. Indeed, by [9, Lemma 1], P is m-dominated. By Corollary 8
and Remark 11(c), P is right m-factorable.

Corollary 13. Let X be an Lp-space with 1 ≤ p < ∞ and let m ∈ N. Every
q-dominated m-homogeneous polynomial on X, with

1
q
≥
∣∣∣∣
1
p
− 1

2

∣∣∣∣ ,

is right 2-factorable.

Proof. It is enough to apply Theorem 6 since, under our hypothesis, for every
Banach space Z, every q-summing operator T ∈ L(X,Z) is 2-factorable [12,
p. 168]. �

Recall that right 2-factorable implies right r-factorable, for every 1 < r < ∞,
by [12, Corollary 9.2].
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Corollary 14. Let X be a Banach space with l.u.st. and with cotype 2. Then,
for every Banach space Y , every integral polynomial P ∈ P(2X,Y ) is right
1-factorable.

Proof. If P ∈ P(2X, Y ) is integral, it is also 2-dominated [9, Lemma 1]. So there
exist a Banach space Z, a 2-summing operator T ∈ L(X, Z) and a polynomial
Q ∈ P(2Z, Y ) such that P = Q ◦ T . Since X has cotype 2, T is also absolutely
summing [12, Corollary 11.16], and then P is 1-dominated. By Corollary 10,
P is right 1-factorable. �

Proposition 15. Let X be a subspace of an Lp-space (1 ≤ p ≤ 2). Then,
for every Banach space Y , every integral polynomial P ∈ P(2X,Y ) is right
1-factorable.

Proof. Let G be an Lp-space (1 ≤ p ≤ 2), let X be a subspace of G, and
suppose that P ∈ P(2X, Y ) is an integral polynomial. As above, there ex-
ist a Banach space Z, a 2-summing operator T ∈ L(X,Z) and a polynomial
Q ∈ P(2Z, Y ) such that P = Q ◦ T . The operator T admits a 2-summing ex-
tension T̃ ∈ L(G,Z) [12, Theorem 4.15]. Since G has cotype 2, T̃ is absolutely
summing [12, Corollary 11.16]. Then the polynomial P̃ := Q ◦ T̃ ∈ P(2G, Y )
is 1-dominated. By Corollary 10, P is right 1-factorable. So there exist
a measure space (Ω, Σ, µ), an operator A ∈ L(G,L1(µ)) and a polynomial
R ∈ P(2L1(µ), Y ∗∗) such that kY ◦ P̃ = R ◦A. Then

kY ◦ P = kY ◦Q ◦ T = kY ◦Q ◦ T̃ ◦ i = kY ◦ P̃ ◦ i = R ◦A ◦ i ,

where i denotes the natural embedding of X into G. This finishes the proof. �

Remark 16. There are subspaces of Lp[0, 1] (1 ≤ p < 2) without l.u.st. [12,
page 364], so the last result does not follow from Corollary 14.

In the following theorem, (en)∞n=1 denotes the unit vector basis of `1 (or `2).

Theorem 17. Let X be a Banach space containing a copy of `1. Then for
every index m ≥ 2, there exists a polynomial P ∈ P(mX, `1) that is not left
r-factorable for any choice of 1 < r ≤ ∞.

Proof. Since X contains a copy of `1, there exists a surjective 2-summing op-
erator q ∈ L(X, `2) [12, Corollary 4.16]. Let (xn) be a bounded sequence in
X such that q(xn) = en for all n ∈ N. Let Q ∈ P(m`2, `1) be the polynomial
defined by

Q(x) := (xm
k )∞k=1 for x = (xk)∞k=1 ∈ `2 .

Consider the polynomial P := Q ◦ q ∈ P(mX, `1). If P were left r-factorable
for some 1 < r ≤ ∞, then there would exist a positive measure space (Ω, Σ, µ),
a polynomial R ∈ P(mX, Lr(µ)) and an operator T ∈ L(Lr(µ), `∗∞) such that
k`1 ◦ P = T ◦ R. Let H ∈ L(`∗∞, `1) be a projection such that H ◦ k`1 is the
identity map on `1. Then P = H ◦ k`1 ◦ P = H ◦ T ◦ R. If 1 < r < ∞,
H ◦T ∈ L(Lr(µ), `1) is a compact operator. The same happens if r = ∞ since,
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in this case, H ◦ T is 2-summing (and hence weakly compact) with values in
`1 [12, Theorem 11.14]. In both cases, P would be a compact polynomial, in
contradiction with the fact that P (xn) = en for all n ∈ N. �

Remark 18. (a) The polynomial constructed in Theorem 17 is right 2-factorable,
and so right r-factorable, for 1 < r < ∞, by [12, Corollary 9.2].

(b) Recall that X is said to be a GL-space if every absolutely summing
operator from X into `2 is 1-factorable. Suppose that at least one of the
spaces X and Y is a GL-space, and that X∗ and Y have cotype 2. Then
L(X, Y ) = Γ2(X, Y ) [12, Theorem 17.12]. The same conditions on the spaces
X and Y do not imply the equality P(mX, Y ) = Pm,left

2 (X, Y ). Indeed, it is
enough to apply Theorem 17 when X = `∞ and Y = `1.

(c) In [10, Proposition 5.8] there are examples of nuclear m-homogeneous
polynomials from `∞ into `1 that are not right 2-factorable, so we have P(m`∞,
`1) 6= Pm,right

2 (`∞, `1) in spite of the equality L(`∞, `1) = Γ2(`∞, `1) [12, The-
orem 17.12].

References

[1] R. Alencar, On reflexivity and basis for P (mE), Proc. Roy. Irish Acad. Sect. A 85
(1985), no. 2, 131–138.

[2] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings,
Bull. Soc. Math. France 106 (1978), no. 1, 3–24.

[3] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials,
Studia Math. 123 (1997), no. 2, 165–173.

[4] G. Botelho, Ideals of polynomials generated by weakly compact operators, Note Mat. 25
(2005/06), no. 1, 69–102.

[5] G. Botelho and D. M. Pellegrino, Two new properties of ideals of polynomials and
applications, Indag. Math. (N.S.) 16 (2005), no. 2, 157–169.

[6] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999),
no. 1, 359–372.

[7] R. Cilia, M. D’Anna, and J. M. Gutiérrez, Polynomials on Banach spaces whose duals
are isomorphic to l1(Γ), Bull. Austral. Math. Soc. 70 (2004), no. 1, 117–124.

[8] R. Cilia and J. M. Gutiérrez, Polynomial characterization of Asplund spaces, Bull. Belg.
Math. Soc. Simon Stevin 12 (2005), no. 3, 393–400.

[9] , Dominated, diagonal polynomials on lp spaces, Arch. Math. (Basel) 84 (2005),
no. 5, 421–431.

[10] , Ideals of integral and r-factorable polynomials, to appear in Bol. Soc. Mat.
Mexicana.

[11] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathemat-
ics Studies, 176. North-Holland Publishing Co., Amsterdam, 1993.

[12] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Stud-
ies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.

[13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, No. 15. American
Mathematical Society, Providence, R.I., 1977.

[14] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in
Mathematics. Springer-Verlag London, Ltd., London, 1999.

[15] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note Mat.
17 (1997), 153–188.



POLYNOMIAL FACTORIZATION THROUGH Lr(µ) SPACES 1307

[16] J. M. Gutiérrez and I. Villanueva, Extensions of multilinear operators and Banach space
properties, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 549–566.

[17] J. Lindenstrauss and H. P. Rosenthal, The Lp spaces, Israel J. Math. 7 (1969), 325–349.
[18] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Brasil. Ciênc. 68
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