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POLYNOMIAL FACTORIZATION THROUGH L,(x) SPACES

RAFFAELLA CILIA AND JOAQUIN M. GUTIERREZ

ABSTRACT. We give conditions so that a polynomial be factorable throu-
gh an L, (u) space. Among them, we prove that, given a Banach space X
and an index m, every absolutely summing operator on X is 1-factorable
if and only if every 1-dominated m-homogeneous polynomial on X is right
1-factorable, if and only if every 1-dominated m-homogeneous polynomial
on X is left 1-factorable. As a consequence, if X has local unconditional
structure, then every 1-dominated homogeneous polynomial on X is right
and left 1-factorable.

We give conditions so that a homogeneous polynomial P between Banach
spaces be factorable through an L, (u)-space, either in the form P = Q o T,
where T is a (linear) operator and @) is a polynomial (right r-factorization), or
in the form P =T o @ (left r-factorization).

It is shown in particular that, given a Banach space X and an index m,
every absolutely summing operator on X is 1-factorable if and only if every 1-
dominated m-homogeneous polynomial on X is right 1-factorable, if and only
if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As
a consequence, if X has local unconditional structure, then every 1-dominated
m-homogeneous polynomial on X is right and left 1-factorable.

Throughout, X, Y, Z denote Banach spaces, X* is the dual of X, and By
stands for its closed unit ball. The closed unit ball Bx» will always be endowed
with the weak-star topology. By N we represent the set of all natural numbers,
and by K the scalar field (real or complex). We use the symbol £(X,Y) for
the space of all (linear bounded) operators from X into Y endowed with the
operator norm. Given a space Y we shall denote by ky the natural embedding
of Y into its bidual Y **.

Given m € N, we denote by P(™X,Y) the space of all m-homogeneous
(continuous) polynomials from X into Y endowed with the supremum norm.
Recall that with each P € P(™X,Y) we can associate a unique symmetric
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m-linear mapping P:Xx (M xX —Y so that
P(z)=P (x (m),x) (z € X)

and we have
~ m™m
1P < |2 < = 1Pl -
m!
Given a polynomial P € P(™X,Y), its derivative is the polynomial
dP € P(™IX, L(X,Y))
defined by
dP(z)(y) = mP (a:, (mf.l),x,y) (r,y € X).

For the general theory of multilinear mappings and polynomials on Banach
spaces, we refer the reader to [14] and [20].

We use the notation ®™X := X®@ (™) ®@X for the m-fold tensor product of
X, and X®,Y (respectively, X®.Y") for the completed projective (respectively,
injective) tensor product of X and Y (see [13] or [11] for the theory of tensor
products).

By 7' X = X®, (m) @, X we denote the m-fold symmetric tensor product
of X, that is, the set of all elements u € ™ X of the form

UZZAJJJJ@("L)@Q?J (’I’LEN7 )\jEK7 {)CjEX,lSan).
J=1

By @7 X (respectively, ®";X) we represent the space ®y'X endowed with
the topology induced by that of @ X (respectively, @7 X).
Given an operator T' € L(X,Y), we denote by

QM : @7 X — 7Y
the operator defined by
QT (1@ Q&) =T(2) @+ @ T(x4,) (1,...,xm € X).

IfA: Xy x - x X, =Y is an m-linear mapping, the linearization of A is
the operator
A X1 Qr @, Xy — Y

given by
n n
A le’j@)"'@xmd :ZA(ml,jw"vl'm,j)
Jj=1 j=1

for all z; € Xi (1 <k <m,1<j<mn)[2], p. 24]. Moreover, ||A| = ||ZH
15, 2.1].
For a polynomial P € P(™X,Y), its linearization

P:or X —Y
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is the operator given by

P> Moo Moz | = \Px;)
j=1 j=1
forallz; € X and \; e K (1 <j <n).
By 6 1 X — ®7'X we denote the canonical polynomial given by

Om () := 2@ ™ @z (x e X).

Given 1 < r < o0, a polynomial P € P(™X,Y) is r-dominated (see, e.g.,
[19]) if there exists a constant k > 0 such that, for all n € N and (z;)"; C X,
we have

(Z ||P(f6i)||’"> <k sup <Z x*(xz')lT) '
i=1 wreBx \i=1

The infimum of the constants k£ that verify this definition is called the r-
dominated quasinorm of P and will be denoted by ||P||,.a (it is a norm if and
only if r > m).

Note that, for m = 1, we obtain the ideal (II,., 7,.) of (absolutely) r-summing
operators. If m = 1 and » = 1, we obtain the class of absolutely summing
operators.

A polynomial P € P("X,Y) is integral [1] if there exists a regular countably
additive, Y**-valued Borel measure G of bounded variation on Bx- such that

P(z) = /B [*(2)]™ dS(z™) (xeX).

A polynomial P € P("X,Y) is nuclear [1] if it can be written in the form
P(x) =Y aj(@)"y;  (zveX),
where (zF) C X* and (y;) C Y are bounded sequences such that

oo
Dol llyill < oo
=1

It is well known that every nuclear polynomial is integral.

The definition of ideal of polynomials may be seen, for instance, in [5].

For the notion and main properties of L,-spaces (1 < p < 00), we refer the
reader to [17].

Definition 1 ([5]). Let Q be an ideal of polynomials. We say that

(a) Q is closed under differentiation if, for every m € N, all Banach spaces
X and Y, and every polynomial P € Q("X,Y"), we have dP(a) € Q(X,Y) for
every a € X
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(b) Q is closed for scalar multiplication if, for every m € N, all Banach spaces
X and Y, and every polynomial P € Q(™X,Y), we have ¢P € Q(™™1X,Y)
for every ¢ € X*.

Definition 2 ([10]). Given a polynomial P € P(™X,Y) and 1 < r < oo, we
say that P is left r-factorable if there exist a positive measure space (Q, %, ),
a polynomial @ € P(™X, L.(u)), and an operator T' € L(L,(u), Y**) such that

kyoP=ToQ.

x .y

‘| Jo
Lo(p) —0— Y™
In this case we set
A (P) = int{|| Q||| 7| for @, T as above} .

We denote by P7*f(XY') the subspace of all P € P(™X,Y) which are left
r-factorable.

Definition 3 ([10]). Given a polynomial P € P("X,Y) and 1 < r < oo, we
say that P is right r-factorable if there exist a positive measure space (2, ¥, p1),
a polynomial @ € P("L,(p),Y™**), and an operator T' € L(X, L, (1)) such that

kyoP=QoT.

x .y

4
LT Yo
(1) T’
In this case we set
yright(py = inf{||Q||||T||™ for Q, T as above} .
We denote by P8l (X V) the subspace of all P € P(™X,Y) which are right

r-factorable.

Recall [12, Chapter 7] that an operator T' € L(X,Y) is r-factorable if there
exist a measure space (2,3, 1) and operators b : L.(u) — Y** and a : X —
L. (p) such that ky o T =boa.

In this case, we write

Vo (T) == inf ||al| [[b]],
where the infimum extends over all factorizations of T' as above; ~, is a norm
on the space I'.(X,Y) of all r-factorable operators from X into Y.

Proposition 4. If a polynomial P € P(™X,Y) is right 1-factorable, then it is
also left 1-factorable, and

e m™ righ
N(P) < W%g “(P).
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Proof. There exist a positive measure space (£2, X, 1), a polynomial

Q e 'P('ITLLI(M)’ Y**) ,
and an operator T' € L(X, L1 (p)) such that ky o P=QoT.

x 2. v

| [

Ly(p) —

Using the polarization formula [20, Theorem 1.10], we have for z1, ..., 2, € X:
by o Plan o) =hy | i 3 erenPlas o+ )
SO ) = €1 € €z ot EmT
Y 1, s m Y mlom . 1 m 11 T
1<j<m

1
= mlam Z 61"'67nkYOP(€1le ++6’mxm)
=+1
1<j<m
1
= —m Z €1 emQoT (121 4+ + €mTm)
=+1
1<j<m
1
= W z::t €1 EmQ(€1T(.T1) + o+ €mT($m))
=+1
1<j<m
= Q(T(x1), ..., T(m))
= Q(T,™), T)(z1,...,2m).

It follows that .
ky oP=Qo (®™T).
Therefore (see the diagram below)
kyOP:k’yOP:kyOﬁOi:50(®mT)Oi,
where ¢ denotes the natural inclusion of ®" X into @' X.

kyoP
®T,3X Y Y**

| [a
mx mJI
ol ot @ Ly (1)

Since ®7' L1 (p) is an L1 (') space [22, Exercise 2.8], P is 1-factorable. Then
P = P o}, is left 1-factorable. Moreover, from the equality

ky oP =ky oPody, =00 (@) 0iody,
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<|efirim 1, Exs2)
= @[ yrim

m™ m
QT

Since the factorization ky o P = Q o T' is arbitrary, we get

we have

WEP) < 0] | @0 (87T) o'

IN

e m™ righ
7 (P) < W%g “(P),

and the proof is finished. O

Remark 5.

(a) There are many left 1-factorable polynomials that are not right 1-factor-
able. Indeed, it is proved in [10, Theorem 2.3] that every integral polynomial
is left 1-factorable so, in particular, a nuclear polynomial is left 1-factorable;
however, there are many nuclear polynomials that are not right 1-factorable
[10, Propositions 5.8 and 5.9].

(b) The polynomial @ € P(?l2, /1) defined by Q(z) := (z7) is obviously
left 1-factorable, but it is not integral (otherwise, it would be compact). More-
over, it is right 2-factorable (and then right r-factorable for every r > 1 [12,
Corollary 9.2]), but it is not left 2-factorable: indeed, this would imply that @
is compact.

Given an operator ideal A, a polynomial P € P(™X,Y) is said to be of
type P4 if there exist a Banach space Z, an operator T' € A(X, Z), and a
polynomial @ € P(™Z,Y) such that P = Qo T [4].

Theorem 6. Let A be an operator ideal, and let 1 < r < co. Let X be a
Banach space. Consider the following statements:
(a) for every Banach space Y, A(X,Y) CT'.(X,Y);
(b) for every Banach space Y and for every index m > 2, P ("X, Y) C
P;n,nght (X, Y),
(c) there exists an index m > 2 such that, for every Banach space Y,
P ("X, Y) C PIE (X, Y);
(d) for every Banach space Y and for every index m > 2,
P ("X, Y) C PX,Y);
(e) there exists an indexr m > 2 such that, for every Banach space Y,
Pria("X,Y) C PEN(XY).

Then, (d) = (e) = (a) & (b) & (c). Moreover, if r =1, all the statements
are equivalent.
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Proof. (a) = (b). Given m € N (m > 2) and a Banach space Y, let P €
Pria(mX,Y). By [5, Proposition 1], P € Pgp,j(™X,Y). Then there exist a
Banach space Z, an operator T € T',.(X, Z), and a polynomial Q € P(™Z,Y)
such that P = Q oT. Since T is r-factorable, there exist a measure space
(Q,%, p) and operators A € L(X, L,(1)), B € L(Lr(p), Z**) such that kzoT =
Bo A. Moreover, 7.(T) < ||B|||A]l. Let Q be the Aron-Berner extension of Q
[2] (see also [16]). We have (see Figure 1)

kyoP=kyoQoT=QokzoT =QoBoA.

Y
X Z Yy **
L, (n) z+ &

FIGURE 1. Factorization of ky o P

So P is right r-factorable.

(b) = (c). It is obvious.

(c) = (a). We show that the ideal P™"8h¢ is closed under differentiation.
Indeed, let P € Pmrsht(X V). Fix a € X. We have to prove that dP(a) is
r-factorable. Clearly, ky odP(a) = d(ky o P)(a). By our hypothesis, there exist
a positive measure space (€, %, i), a polynomial Q € P("L,.(u), Y**), and an
operator T' € L(X, L,(p1)) such that ky oP=QoT.

x L.y

T lky
LT Y**
(1) T

Define the operator A : L,.(u) — Y™** by

A(2) = Q(T(a), "D, T(a),2) (2 € Lu(p)).
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In particular, for every x € X,

A(T(z)) = Q(T(a), =1, T(a), T(x))
= k;o\P(a, m=1) q, x)
_ %d(k‘y o P)(a)(x)

- %kzy o dP(a)(x).

Hence
1
—ky odP(a) =AoT,
m

and dP(a) is r-factorable. Since the ideal P[4 is closed for scalar multiplica-
tion [5, Lemma 1], (a) follows from [5, Proposition 2.

(d) = (e). It is obvious.

(e) = (a). Let T € A(X,Y). Let 9 € X and yo = T(zp) # 0. Choose
y* € Y* such that y*(yo) = 1. Let z* = T*(y*). So z*(x¢) = 1. For every
1 < j < m —1, we introduce the operators 7; : @' X — @) X and 7} :
@Y — @7 Y, given in [3] by

i=1

=1
and
r .
s (Z Ny U ®yi>
=1

= > Ay wye Doy (MEK, yeY, 1<i<r).
i=1

Consider the polynomials

P:=Tomo---omu_106, € P("X,Y)

and

coml o6 0T eP(™MX,Y),

O
I
3

N
o
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where 6, : X — @', X and J;, : Y — @'Y are the canonical polynomials.
We have P = Q. Indeed, for x € X,

P(x)=Tom o+ 0mym_1 0 0n(x)
=Tom o - 0mMm_1 <$® (m) ®a?)

=[z"(@)]Tomo - 0mpu_2 (m@ (m-1) ®$)

= T(2)fa" (2)]" "
On the other hand,
Q(x)=mjo---om, 1008 oT(x)
= 71'& 0---0 71';”_1 (T(m)@ (m) ®T($))

=y (T(x))r, o--on (T(m)@ (m=1) ®T(:c))

=y (T ()" T()
= [2" (@) T ().

Hence P = Tom0---0Ty 100, € Pria (™X,Y) and then, by our hypothesis,
it is left r-factorable. So its linearization T o7 o---om,_1 is also r-factorable.
Now, for every 1 < p < m —1, let j, : @ X — ®@PF1X be the operator [3,
page 168] such that m, o j, is the identity on @2  X. It follows that

T:Toﬂ'lo...oﬂ-m_lojm_lo...ojl

is r-factorable.

If » = 1, the statements are equivalent since (b) = (d) follows from Propo-
sition 4. 0

Remark 7. If r > 1, the assertions of Theorem 6 are not equivalent. In-
deed, the polynomial @ € P("ls, (1), given by Q(z) := (z");"_,, belongs to
Priry) (Mo, £1). If A := Ty, Theorem 6(a) is satisfied, but Q ¢ Pyttt ey, 4),
by Remark 5(b).

Corollary 8. Let X be a Banach space, and let 1 < r < oco. Consider the
following assertions:

(a) for every Banach space Y, every r-summing operator T : X — Y is
r-factorable;

(b) for every Banach space Y, for everym € N (m > 2), every r-dominated
polynomial P € P(™X,Y) is right r-factorable;

(c) there exists m € N (m > 2) such that, for every Banach space Y, every
r-dominated polynomial P € P("™X,Y) is right r-factorable;
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(d) for every Banach spaceY, for everym € N (m > 2), every r-dominated
polynomial P € P("MX,Y) is left r-factorable;

(e) there exists m € N (m > 2) such that, for every Banach space Y, every
r-dominated polynomial P € P(™X,Y) is left r-factorable.

Then (d) = (e) = (a) & (b) & (). If r =1, all the assertions are equivalent.

Proof. The result follows from Theorem 6 since the ideal of r-dominated poly-
nomials coincides with P,y (see, for instance, [8, Theorem 5] or [7, Theo-
rem 5)). O

Given a Banach space X, let Fx denote the collection of all finite dimen-
sional subspaces of X. We say that X has local unconditional structure (l.u.st.,
for short) [12, Chapter 17] if there is a constant A > 1 such that, for all E € Fx,
the canonical embedding E < X has a factorization E — Y - X, through
a Banach space Y with unconditional basis; u© and v are operators satisfying
[lz]| [|[v]] ub(Y) < A, where ub(Y") is the unconditional basis constant of Y. The
smallest of all such A’s is called the lLu.st. constant of X, and is denoted by
A(X).

Every L,-space (1 < p < 0o) and every Banach lattice have local uncondi-
tional structure [12, Theorem 17.1].

In the following lemma, the factorization result is well known (see [8, Theo-
rem 5] or [7, Theorem 5]). We are interested here in the equality of the norms.

Lemma 9. A polynomial P € P(™X,Y) is r-dominated if and only if there
are a Banach space Z, an r-summing operator T € L(X, Z), and a polynomial
Q € P(™Z,Y) such that P = QoT. Moreover,

1P]l,.q = it {Ql 7 (T)™ : QT as above}

Proof. Let P be r-dominated. We know that it admits a factorization P = QoT
as in the statement. For every n € N and all z4,..., 2, € X, we have

(Z ||P<xi>||"/m> = (Z QT (= ”’”)
=1 =1

[i QT ]

i=1
m

~ o (ZIIT(%)IIT> T
=1

<[l sup <Zw(w)> m(T)™ .

T*EBx* =1

IN

Hence,

1Pl < QI 7 (T)™
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Given € > 0, by [18, Proposition 3.1], there are a constant C. > 0 with
Ce <|Pll,.q+e

and a regular Borel probability measure p. on By« such that

m

mwnsa[/ Lﬁqumuw} (z € X).

Byx

Let Ty : X — L, (Bx~, pte) be the operator given by
Ty@)) = 2'(z) (v € X, o € Bx-).

Since, for x € X,

S

HMM=MM%@WWMW4

1) [ @ du)]
<l

Tp is continuous. Let Z, := Ty(X), that is, the closure of To(X) in L, (Bx~, fie)-
Let

T.: X — Z.

be the operator defined by Te(x) := To(z) for all x € X. By (1), T, is r-summing
[12, Theorem 2.12], and 7.(T.) < 1. Define a polynomial Qg : To(X) — Y by

Qo(To()) :== P(z).
We have

1QuTo ()|l = [[P()]]

g44|mmwmm
= C @)™,

m
T

so Qo is continuous with [|Qo|| < C.. Let Q. be the continuous extension of
Qo to Ze with ||Qc|| = ||Qo|l. Then P = Q. o T¢, with T, r-summing, and

[Qell - (Te)™ < [|Qoll < Ce < ||P|,q + ¢,
and the proof is finished. O
Corollary 10. Let X be a Banach space with l.u.st. Then, for every Banach

space Y and every index m > 2, every 1-dominated polynomial P € P(MX,Y)
is right 1-factorable, with ~7&" (P) < A(X)™||P|)1-q.
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Proof. By Lemma 9, there exist a Banach space Z, an absolutely summing
operator T' € L(X,Z) and a polynomial @ € P(™Z,Y) such that P = Qo T.
Since X has Lu.st., T is 1-factorable [12, 17.7], so there exist a measure space
(Q,%, p) and operators A € L(X, L1(u)), B € L(L1(p), Z**) such that kzoT =
Bo A. Moreover, v1(T) < A(X)m1(T) [12, 17.7]. As in the proof of Theorem 6
(see Figure 1, with r = 1), using the Aron-Berner extension @ of @, we have
kyoP:konOT:@OBOA.
So P is right 1-factorable. Moreover, we observe that

W P) <A™ @0 B < IQuiAImIBI™,

= ||@Q|| [6, Proposition 1.3]. Taking the
infimum over A and B such that kz oT = B o A, we have

'y{ight(P) < QI (T)™ < QIAX)™m (T)™ .

where we have used the equality H@

Taking again the infimum over ) and T such that P = Q o T, by Lemma 9, we
obtain .

WEP) < AMX)™(|P]l1a s
and the proof is finished. O

Remark 11. The assertion (a) in Corollary 8 holds in particular:

(a) for every Banach space X when r = 2 [12, Corollary 2.16];

(b) if X is an Lp-space, with 1 < p < 2, and 1 < r < 2 since, in this
case, every r-summing operator is also r-integral [12, Corollary 6.19], and then
r-factorable;

(c) if X is a C(K) space, for every 1 < r < oo, since in this case, every r-
summing operator is also r-integral [12, Corollary 5.8], and then r-factorable.

Remark 12. Every m-homogeneous integral polynomial on a C'(K) space is
right m-factorable. Indeed, by [9, Lemma 1], P is m-dominated. By Corollary 8
and Remark 11(c), P is right m-factorable.

Corollary 13. Let X be an L,-space with 1 < p < oo and let m € N. Every
q-dominated m-homogeneous polynomial on X, with
1 ‘ 1 1
- >

7>

p 2

)

is right 2-factorable.

Proof. 1t is enough to apply Theorem 6 since, under our hypothesis, for every
Banach space Z, every g-summing operator T' € L(X,Z) is 2-factorable [12,
p. 168]. O

Recall that right 2-factorable implies right r-factorable, for every 1 < r < oo,
by [12, Corollary 9.2].
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Corollary 14. Let X be a Banach space with l.u.st. and with cotype 2. Then,
for every Banach space Y, every integral polynomial P € P(3X,Y) is right
1-factorable.

Proof. If P € P(?X,Y) is integral, it is also 2-dominated [9, Lemma 1]. So there
exist a Banach space Z, a 2-summing operator T' € £(X, Z) and a polynomial
Q € P(*Z,Y) such that P = Qo T. Since X has cotype 2, T is also absolutely
summing [12, Corollary 11.16], and then P is 1-dominated. By Corollary 10,
P is right 1-factorable. O

Proposition 15. Let X be a subspace of an L,-space (1 < p < 2). Then,
for every Banach space Y, every integral polynomial P € P(3X,Y) is right
1-factorable.

Proof. Let G be an L,-space (1 < p < 2), let X be a subspace of G, and
suppose that P € P(2X,Y) is an integral polynomial. As above, there ex-
ist a Banach space Z, a 2-summing operator T' € £(X,Z) and a polynomial
Q € P(*Z,Y) such that P = Q o T. The operator T' admits a 2-summing ex-
tension T' € £(G, Z) [12, Theorem 4.15]. Since G has cotype 2, T is absolutely
summing [12, Corollary 11.16]. Then the polynomial P:=QoTe¢ P(3G,Y)
is 1-dominated. By Corollary 10, P is right 1-factorable. So there exist
a measure space (2,%,u), an operator A € L(G,L;(p)) and a polynomial
R € P(3Ly (1), Y**) such that ky o P = Ro A. Then

ky oP=kyoQoT=kyoQoToi=kyoPoi=RoAoi,
where 7 denotes the natural embedding of X into G. This finishes the proof. [

Remark 16. There are subspaces of L,[0,1] (1 < p < 2) without Lu.st. [12,
page 364], so the last result does not follow from Corollary 14.

In the following theorem, (e, )22 ; denotes the unit vector basis of ¢; (or £s).

Theorem 17. Let X be a Banach space containing a copy of ¢1. Then for
every index m > 2, there exists a polynomial P € P(™X, 1) that is not left
r-factorable for any choice of 1 < r < c0.

Proof. Since X contains a copy of ¢, there exists a surjective 2-summing op-
erator ¢ € L(X,{3) [12, Corollary 4.16]. Let (z,,) be a bounded sequence in
X such that ¢(z,) = e, for all n € N. Let Q € P(™{s, 1) be the polynomial
defined by
Qo) = (@), for o = (1) € fo.

Consider the polynomial P := Qo q € P(™X,¥¢1). If P were left r-factorable
for some 1 < r < oo, then there would exist a positive measure space (Q, %, ),
a polynomial R € P("™X, L.(u)) and an operator T € L(L,(u), %) such that
kegyoP=ToR. Let H € L(¢},,¢1) be a projection such that H o ky, is the
identity map on ¢;. Then P = Hoky oP = HoToR. If 1 < r < o0,
HoT € L(L,.(u),¢1) is a compact operator. The same happens if r = co since,
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in this case, H o T is 2-summing (and hence weakly compact) with values in
¢y [12, Theorem 11.14]. In both cases, P would be a compact polynomial, in
contradiction with the fact that P(z,) = e, for all n € N. O

Remark 18. (a) The polynomial constructed in Theorem 17 is right 2-factorable,
and so right r-factorable, for 1 < r < oo, by [12, Corollary 9.2].

(b) Recall that X is said to be a GL-space if every absolutely summing
operator from X into ¢y is 1-factorable. Suppose that at least one of the
spaces X and Y is a GL-space, and that X* and Y have cotype 2. Then
L(X,Y) =T2(X,Y) [12, Theorem 17.12]. The same conditions on the spaces
X and Y do not imply the equality P(™X,Y) = Py"'"(X,Y). Indeed, it is
enough to apply Theorem 17 when X = /¢, and Y = /¢;.

(c) In [10, Proposition 5.8] there are examples of nuclear m-homogeneous
polynomials from ¢, into ¢; that are not right 2-factorable, so we have P ("o,
0y) # P (0 6h) in spite of the equality £(fso, 1) = Ta(fso, £1) [12, The-
orem 17.12].
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