POLYNOMIAL FACTORIZATION THROUGH $L_{r}(\mu)$ SPACES

Raffaella Cilia and Joaquín M. Gutiérrez

Abstract

We give conditions so that a polynomial be factorable through an $L_{r}(\mu)$ space. Among them, we prove that, given a Banach space X and an index m, every absolutely summing operator on X is 1 -factorable if and only if every 1 -dominated m-homogeneous polynomial on X is right 1 -factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated homogeneous polynomial on X is right and left 1 -factorable.

We give conditions so that a homogeneous polynomial P between Banach spaces be factorable through an $L_{r}(\mu)$-space, either in the form $P=Q \circ T$, where T is a (linear) operator and Q is a polynomial (right r-factorization), or in the form $P=T \circ Q$ (left r-factorization).

It is shown in particular that, given a Banach space X and an index m, every absolutely summing operator on X is 1 -factorable if and only if every 1 dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1 -factorable. As a consequence, if X has local unconditional structure, then every 1-dominated m-homogeneous polynomial on X is right and left 1 -factorable.

Throughout, X, Y, Z denote Banach spaces, X^{*} is the dual of X, and B_{X} stands for its closed unit ball. The closed unit ball $B_{X^{*}}$ will always be endowed with the weak-star topology. By \mathbb{N} we represent the set of all natural numbers, and by \mathbb{K} the scalar field (real or complex). We use the symbol $\mathcal{L}(X, Y)$ for the space of all (linear bounded) operators from X into Y endowed with the operator norm. Given a space Y we shall denote by k_{Y} the natural embedding of Y into its bidual $Y^{* *}$.

Given $m \in \mathbb{N}$, we denote by $\mathcal{P}\left({ }^{m} X, Y\right)$ the space of all m-homogeneous (continuous) polynomials from X into Y endowed with the supremum norm. Recall that with each $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ we can associate a unique symmetric

[^0]
$$
P(x)=\widehat{P}(x, \stackrel{(m)}{\cdots}, x) \quad(x \in X)
$$
and we have
$$
\|P\| \leq\|\widehat{P}\| \leq \frac{m^{m}}{m!}\|P\|
$$

Given a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$, its derivative is the polynomial

$$
d P \in \mathcal{P}\left({ }^{m-1} X, \mathcal{L}(X, Y)\right)
$$

defined by

$$
d P(x)(y)=m \widehat{P}(x, \stackrel{(m-1)}{\cdots}, x, y) \quad(x, y \in X)
$$

For the general theory of multilinear mappings and polynomials on Banach spaces, we refer the reader to [14] and [20].

We use the notation $\otimes^{m} X:=X \otimes \stackrel{(m)}{\bullet!} \otimes X$ for the m-fold tensor product of X, and $X \otimes_{\pi} Y$ (respectively, $X \otimes_{\epsilon} Y$) for the completed projective (respectively, injective) tensor product of X and Y (see [13] or [11] for the theory of tensor products).

By $\otimes_{s}^{m} X:=X \otimes_{s} \stackrel{(m)}{m} \otimes_{s} X$ we denote the m-fold symmetric tensor product of X, that is, the set of all elements $u \in \otimes^{m} X$ of the form

$$
u=\sum_{j=1}^{n} \lambda_{j} x_{j} \otimes \stackrel{(m)}{(!)} \otimes x_{j} \quad\left(n \in \mathbb{N}, \lambda_{j} \in \mathbb{K}, x_{j} \in X, 1 \leq j \leq n\right)
$$

By $\otimes_{\pi, s}^{m} X$ (respectively, $\otimes_{\epsilon, s}^{m} X$) we represent the space $\otimes_{s}^{m} X$ endowed with the topology induced by that of $\otimes_{\pi}^{m} X$ (respectively, $\otimes_{\epsilon}^{m} X$).

Given an operator $T \in \mathcal{L}(X, Y)$, we denote by

$$
\otimes^{m} T: \otimes_{\pi}^{m} X \longrightarrow \otimes_{\pi}^{m} Y
$$

the operator defined by

$$
\otimes^{m} T\left(x_{1} \otimes \cdots \otimes x_{m}\right):=T(x) \otimes \cdots \otimes T\left(x_{m}\right) \quad\left(x_{1}, \ldots, x_{m} \in X\right)
$$

If $A: X_{1} \times \cdots \times X_{m} \rightarrow Y$ is an m-linear mapping, the linearization of A is the operator

$$
\bar{A}: X_{1} \otimes_{\pi} \cdots \otimes_{\pi} X_{m} \longrightarrow Y
$$

given by

$$
\bar{A}\left(\sum_{j=1}^{n} x_{1, j} \otimes \cdots \otimes x_{m, j}\right)=\sum_{j=1}^{n} A\left(x_{1, j}, \ldots, x_{m, j}\right)
$$

for all $x_{k, j} \in X_{k}(1 \leq k \leq m, 1 \leq j \leq n)[21$, p. 24]. Moreover, $\|A\|=\|\bar{A}\|$ [15, 2.1].

For a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$, its linearization

$$
\bar{P}: \otimes_{\pi, s}^{m} X \longrightarrow Y
$$

is the operator given by

$$
\bar{P}\left(\sum_{j=1}^{n} \lambda_{j} x_{j} \otimes \stackrel{(m)}{\bullet} \otimes x_{j}\right)=\sum_{j=1}^{n} \lambda_{j} P\left(x_{j}\right)
$$

for all $x_{j} \in X$ and $\lambda_{j} \in \mathbb{K}(1 \leq j \leq n)$.
By $\delta_{m}: X \rightarrow \otimes_{\pi}^{m} X$ we denote the canonical polynomial given by

$$
\delta_{m}(x):=x \otimes \stackrel{(m)}{\cdots!} \otimes x \quad(x \in X) .
$$

Given $1 \leq r<\infty$, a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is r-dominated (see, e.g., [19]) if there exists a constant $k>0$ such that, for all $n \in \mathbb{N}$ and $\left(x_{i}\right)_{i=1}^{n} \subset X$, we have

$$
\left(\sum_{i=1}^{n}\left\|P\left(x_{i}\right)\right\|^{\frac{r}{m}}\right)^{\frac{m}{r}} \leq k \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{r}\right)^{\frac{m}{r}}
$$

The infimum of the constants k that verify this definition is called the r dominated quasinorm of P and will be denoted by $\|P\|_{r-\mathrm{d}}$ (it is a norm if and only if $r \geq m$).

Note that, for $m=1$, we obtain the ideal $\left(\Pi_{r}, \pi_{r}\right)$ of (absolutely) r-summing operators. If $m=1$ and $r=1$, we obtain the class of absolutely summing operators.

A polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is integral [1] if there exists a regular countably additive, $Y^{* *}$-valued Borel measure \mathcal{G} of bounded variation on $B_{X^{*}}$ such that

$$
P(x)=\int_{B_{X^{*}}}\left[x^{*}(x)\right]^{m} d \mathcal{G}\left(x^{*}\right) \quad(x \in X)
$$

A polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is nuclear [1] if it can be written in the form

$$
P(x)=\sum_{i=1}^{\infty} x_{i}^{*}(x)^{m} y_{i} \quad(x \in X)
$$

where $\left(x_{i}^{*}\right) \subset X^{*}$ and $\left(y_{i}\right) \subset Y$ are bounded sequences such that

$$
\sum_{i=1}^{\infty}\left\|x_{i}^{*}\right\|^{m}\left\|y_{i}\right\|<\infty
$$

It is well known that every nuclear polynomial is integral.
The definition of ideal of polynomials may be seen, for instance, in [5].
For the notion and main properties of \mathcal{L}_{p}-spaces $(1 \leq p \leq \infty)$, we refer the reader to [17].

Definition 1 ([5]). Let \mathcal{Q} be an ideal of polynomials. We say that
(a) \mathcal{Q} is closed under differentiation if, for every $m \in \mathbb{N}$, all Banach spaces X and Y, and every polynomial $P \in \mathcal{Q}\left({ }^{m} X, Y\right)$, we have $d P(a) \in \mathcal{Q}(X, Y)$ for every $a \in X$;
(b) \mathcal{Q} is closed for scalar multiplication if, for every $m \in \mathbb{N}$, all Banach spaces X and Y, and every polynomial $P \in \mathcal{Q}\left({ }^{m} X, Y\right)$, we have $\phi P \in \mathcal{Q}\left({ }^{m+1} X, Y\right)$ for every $\phi \in X^{*}$.
Definition 2 ([10]). Given a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ and $1 \leq r \leq \infty$, we say that P is left r-factorable if there exist a positive measure space (Ω, Σ, μ), a polynomial $Q \in \mathcal{P}\left({ }^{m} X, L_{r}(\mu)\right)$, and an operator $T \in \mathcal{L}\left(L_{r}(\mu), Y^{* *}\right)$ such that $k_{Y} \circ P=T \circ Q$.

In this case we set

$$
\gamma_{r}^{\text {left }}(P):=\inf \{\|Q\|\|T\| \text { for } Q, T \text { as above }\}
$$

We denote by $\mathcal{P}_{r}^{m, \text { left }}(X, Y)$ the subspace of all $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ which are left r-factorable.

Definition 3 ([10]). Given a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ and $1 \leq r \leq \infty$, we say that P is right r-factorable if there exist a positive measure space (Ω, Σ, μ), a polynomial $Q \in \mathcal{P}\left({ }^{m} L_{r}(\mu), Y^{* *}\right)$, and an operator $T \in \mathcal{L}\left(X, L_{r}(\mu)\right)$ such that $k_{Y} \circ P=Q \circ T$.

In this case we set

$$
\gamma_{r}^{\text {right }}(P):=\inf \left\{\|Q\|\|T\|^{m} \text { for } Q, T \text { as above }\right\}
$$

We denote by $\mathcal{P}_{r}^{m, \text { right }}(X, Y)$ the subspace of all $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ which are right r-factorable.

Recall [12, Chapter 7] that an operator $T \in \mathcal{L}(X, Y)$ is r-factorable if there exist a measure space (Ω, Σ, μ) and operators $b: L_{r}(\mu) \rightarrow Y^{* *}$ and $a: X \rightarrow$ $L_{r}(\mu)$ such that $k_{Y} \circ T=b \circ a$.

In this case, we write

$$
\gamma_{r}(T):=\inf \|a\|\|b\|
$$

where the infimum extends over all factorizations of T as above; γ_{r} is a norm on the space $\Gamma_{r}(X, Y)$ of all r-factorable operators from X into Y.

Proposition 4. If a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is right 1-factorable, then it is also left 1-factorable, and

$$
\gamma_{1}^{\text {left }}(P) \leq \frac{m^{m}}{m!} \gamma_{1}^{\text {right }}(P)
$$

Proof. There exist a positive measure space (Ω, Σ, μ), a polynomial

$$
Q \in \mathcal{P}\left({ }^{m} L_{1}(\mu), Y^{* *}\right),
$$

and an operator $T \in \mathcal{L}\left(X, L_{1}(\mu)\right)$ such that $k_{Y} \circ P=Q \circ T$.

Using the polarization formula [20, Theorem 1.10], we have for $x_{1}, \ldots, x_{m} \in X$:

$$
\begin{aligned}
k_{Y} \circ \widehat{P}\left(x_{1}, \cdots, x_{m}\right) & =k_{Y}\left(\frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j}= \pm 1 \\
1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} P\left(\epsilon_{1} x_{1}+\cdots+\epsilon_{m} x_{m}\right)\right) \\
& =\frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j}= \pm 1 \\
1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} k_{Y} \circ P\left(\epsilon_{1} x_{1}+\cdots+\epsilon_{m} x_{m}\right) \\
& =\frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j}= \pm 1 \\
1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} Q \circ T\left(\epsilon_{1} x_{1}+\cdots+\epsilon_{m} x_{m}\right) \\
& =\frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j}= \pm 1 \\
1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} Q\left(\epsilon_{1} T\left(x_{1}\right)+\cdots+\epsilon_{m} T\left(x_{m}\right)\right) \\
& =\widehat{Q}\left(T\left(x_{1}\right), \ldots, T\left(x_{m}\right)\right) \\
& =\widehat{Q}(T,(m), T)\left(x_{1}, \ldots, x_{m}\right) .
\end{aligned}
$$

It follows that

$$
\overline{k_{Y} \circ \widehat{P}}=\overline{\widehat{Q}} \circ\left(\otimes^{m} T\right)
$$

Therefore (see the diagram below)

$$
k_{Y} \circ \bar{P}=\overline{k_{Y} \circ P}=\overline{k_{Y} \circ \widehat{P}} \circ i=\overline{\widehat{Q}} \circ\left(\otimes^{m} T\right) \circ i
$$

where i denotes the natural inclusion of $\otimes_{\pi, s}^{m} X$ into $\otimes_{\pi}^{m} X$.

Since $\otimes_{\pi}^{m} L_{1}(\mu)$ is an $L_{1}\left(\mu^{\prime}\right)$ space [22, Exercise 2.8], \bar{P} is 1-factorable. Then $P=\bar{P} \circ \delta_{m}$ is left 1-factorable. Moreover, from the equality

$$
k_{Y} \circ P=k_{Y} \circ \bar{P} \circ \delta_{m}=\overline{\widehat{Q}} \circ\left(\otimes^{m} T\right) \circ i \circ \delta_{m},
$$

we have

$$
\begin{aligned}
\gamma_{1}^{\text {left }}(P) & \leq\left\|\delta_{m}\right\|\left\|\overline{\widehat{Q}} \circ\left(\otimes^{m} T\right) \circ i\right\| \\
& \leq\|\overline{\widehat{Q}}\|\|T\|^{m} \quad[11, \text { Ex 3.2] } \\
& =\|\widehat{Q}\|\|T\|^{m} \\
& \leq \frac{m^{m}}{m!}\|Q\|\|T\|^{m} .
\end{aligned}
$$

Since the factorization $k_{Y} \circ P=Q \circ T$ is arbitrary, we get

$$
\gamma_{1}^{\text {left }}(P) \leq \frac{m^{m}}{m!} \gamma_{1}^{\text {right }}(P)
$$

and the proof is finished.
Remark 5.
(a) There are many left 1-factorable polynomials that are not right 1-factorable. Indeed, it is proved in [10, Theorem 2.3] that every integral polynomial is left 1 -factorable so, in particular, a nuclear polynomial is left 1-factorable; however, there are many nuclear polynomials that are not right 1 -factorable [10, Propositions 5.8 and 5.9].
(b) The polynomial $Q \in \mathcal{P}\left({ }^{2} \ell_{2}, \ell_{1}\right)$ defined by $Q(x):=\left(x_{k}^{2}\right)_{k}$ is obviously left 1-factorable, but it is not integral (otherwise, it would be compact). Moreover, it is right 2-factorable (and then right r-factorable for every $r>1$ [12, Corollary 9.2]), but it is not left 2-factorable: indeed, this would imply that Q is compact.

Given an operator ideal \mathcal{A}, a polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is said to be of type $\mathcal{P}_{\mathcal{L}[\mathcal{A}]}$ if there exist a Banach space Z, an operator $T \in \mathcal{A}(X, Z)$, and a polynomial $Q \in \mathcal{P}\left({ }^{m} Z, Y\right)$ such that $P=Q \circ T$ [4].

Theorem 6. Let \mathcal{A} be an operator ideal, and let $1 \leq r \leq \infty$. Let X be a Banach space. Consider the following statements:
(a) for every Banach space $Y, \mathcal{A}(X, Y) \subseteq \Gamma_{r}(X, Y)$;
(b) for every Banach space Y and for every index $m \geq 2, \mathcal{P}_{\mathcal{L}[\mathcal{A}]}\left({ }^{m} X, Y\right) \subseteq$ $\mathcal{P}_{r}^{m, \text { right }}(X, Y)$;
(c) there exists an index $m \geq 2$ such that, for every Banach space Y,

$$
\mathcal{P}_{\mathcal{L}[\mathcal{A}]}\left({ }^{m} X, Y\right) \subseteq \mathcal{P}_{r}^{m, \text { right }}(X, Y)
$$

(d) for every Banach space Y and for every index $m \geq 2$,

$$
\mathcal{P}_{\mathcal{L}[\mathcal{A}]}\left({ }^{m} X, Y\right) \subseteq \mathcal{P}_{r}^{m, \text { left }}(X, Y) ;
$$

(e) there exists an index $m \geq 2$ such that, for every Banach space Y,

$$
\mathcal{P}_{\mathcal{L}[\mathcal{A}]}\left({ }^{m} X, Y\right) \subseteq \mathcal{P}_{r}^{m, \text { left }}(X, Y)
$$

Then, $(\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$. Moreover, if $r=1$, all the statements are equivalent.

Proof. (a) \Rightarrow (b). Given $m \in \mathbb{N}(m \geq 2)$ and a Banach space Y, let $P \in$ $\mathcal{P}_{\mathcal{L}[\mathcal{A}]}\left({ }^{m} X, Y\right)$. By [5, Proposition 1], $P \in \mathcal{P}_{\mathcal{L}\left[\Gamma_{r}\right]}\left({ }^{m} X, Y\right)$. Then there exist a Banach space Z, an operator $T \in \Gamma_{r}(X, Z)$, and a polynomial $Q \in \mathcal{P}\left({ }^{m} Z, Y\right)$ such that $P=Q \circ T$. Since T is r-factorable, there exist a measure space (Ω, Σ, μ) and operators $A \in \mathcal{L}\left(X, L_{r}(\mu)\right), B \in \mathcal{L}\left(L_{r}(\mu), Z^{* *}\right)$ such that $k_{Z} \circ T=$ $B \circ A$. Moreover, $\gamma_{r}(T) \leq\|B\|\|A\|$. Let \widetilde{Q} be the Aron-Berner extension of Q [2] (see also [16]). We have (see Figure 1)

$$
k_{Y} \circ P=k_{Y} \circ Q \circ T=\widetilde{Q} \circ k_{Z} \circ T=\widetilde{Q} \circ B \circ A
$$

Y

Figure 1. Factorization of $k_{Y} \circ P$

So P is right r-factorable.
(b) \Rightarrow (c). It is obvious.
(c) \Rightarrow (a). We show that the ideal $\mathcal{P}_{r}^{m, \text { right }}$ is closed under differentiation. Indeed, let $P \in \mathcal{P}_{r}^{m, \text { right }}(X, Y)$. Fix $a \in X$. We have to prove that $d P(a)$ is r-factorable. Clearly, $k_{Y} \circ d P(a)=d\left(k_{Y} \circ P\right)(a)$. By our hypothesis, there exist a positive measure space (Ω, Σ, μ), a polynomial $Q \in \mathcal{P}\left({ }^{m} L_{r}(\mu), Y^{* *}\right)$, and an operator $T \in \mathcal{L}\left(X, L_{r}(\mu)\right)$ such that $k_{Y} \circ P=Q \circ T$.

Define the operator $A: L_{r}(\mu) \rightarrow Y^{* *}$ by

$$
A(z)=\widehat{Q}(T(a), \stackrel{(m-1)}{\cdots}, T(a), z) \quad\left(z \in L_{r}(\mu)\right)
$$

In particular, for every $x \in X$,

$$
\begin{aligned}
A(T(x)) & =\widehat{Q}(T(a),(\stackrel{(m-1)}{\cdots}, T(a), T(x)) \\
& =\widehat{k_{Y} \circ P}(a, \stackrel{(m-1)}{\cdots}, a, x) \\
& =\frac{1}{m} d\left(k_{Y} \circ P\right)(a)(x) \\
& =\frac{1}{m} k_{Y} \circ d P(a)(x) .
\end{aligned}
$$

Hence

$$
\frac{1}{m} k_{Y} \circ d P(a)=A \circ T
$$

and $d P(a)$ is r-factorable. Since the ideal $\mathcal{P}_{\mathcal{L}[\mathcal{A}]}$ is closed for scalar multiplication [5, Lemma 1], (a) follows from [5, Proposition 2].
(d) \Rightarrow (e). It is obvious.
(e) \Rightarrow (a). Let $T \in \mathcal{A}(X, Y)$. Let $x_{0} \in X$ and $y_{0}=T\left(x_{0}\right) \neq 0$. Choose $y^{*} \in Y^{*}$ such that $y^{*}\left(y_{0}\right)=1$. Let $x^{*}=T^{*}\left(y^{*}\right)$. So $x^{*}\left(x_{0}\right)=1$. For every $1 \leq j \leq m-1$, we introduce the operators $\pi_{j}: \otimes_{\pi, s}^{j+1} X \rightarrow \otimes_{\pi, s}^{j} X$ and $\pi_{j}^{\prime}:$ $\otimes_{\pi, s}^{j+1} Y \rightarrow \otimes_{\pi, s}^{j} Y$, given in [3] by

$$
\begin{aligned}
& \pi_{j}\left(\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes \stackrel{(j+1)}{\cdots} \otimes x_{i}\right) \\
= & \sum_{i=1}^{r} \lambda_{i} x^{*}\left(x_{i}\right) x_{i} \otimes \stackrel{(j)}{\cdot} . \otimes x_{i} \quad\left(\lambda_{i} \in \mathbb{K}, x_{i} \in X, 1 \leq i \leq r\right)
\end{aligned}
$$

and

$$
\begin{aligned}
& \left.\pi_{j}^{\prime}\left(\sum_{i=1}^{r} \lambda_{i} y_{i} \otimes \stackrel{(j+1)}{\cdots}\right) \otimes y_{i}\right) \\
= & \sum_{i=1}^{r} \lambda_{i} y^{*}\left(y_{i}\right) y_{i} \otimes!(\cdot) . \otimes y_{i} \quad\left(\lambda_{i} \in \mathbb{K}, y_{i} \in Y, 1 \leq i \leq r\right) .
\end{aligned}
$$

Consider the polynomials

$$
P:=T \circ \pi_{1} \circ \cdots \circ \pi_{m-1} \circ \delta_{m} \in \mathcal{P}\left({ }^{m} X, Y\right)
$$

and

$$
Q:=\pi_{1}^{\prime} \circ \cdots \circ \pi_{m-1}^{\prime} \circ \delta_{m}^{\prime} \circ T \in \mathcal{P}\left({ }^{m} X, Y\right)
$$

where $\delta_{m}: X \rightarrow \otimes_{\pi, s}^{m} X$ and $\delta_{m}^{\prime}: Y \rightarrow \otimes_{\pi, s}^{m} Y$ are the canonical polynomials. We have $P=Q$. Indeed, for $x \in X$,

$$
\begin{aligned}
P(x) & =T \circ \pi_{1} \circ \cdots \circ \pi_{m-1} \circ \delta_{m}(x) \\
& =T \circ \pi_{1} \circ \cdots \circ \pi_{m-1}(x \otimes \stackrel{(m)}{\cdots} \otimes x) \\
& =\left[x^{*}(x)\right] T \circ \pi_{1} \circ \cdots \circ \pi_{m-2}\left(x \otimes\left(\frac{(m-1)}{\cdots} \otimes x\right)\right. \\
& =\cdots \\
& =T(x)\left[x^{*}(x)\right]^{m-1} .
\end{aligned}
$$

On the other hand,

$$
\begin{aligned}
Q(x) & =\pi_{1}^{\prime} \circ \cdots \circ \pi_{m-1}^{\prime} \circ \delta_{m}^{\prime} \circ T(x) \\
& =\pi_{1}^{\prime} \circ \cdots \circ \pi_{m-1}^{\prime}(T(x) \otimes \stackrel{(m)}{(} \otimes T(x)) \\
& =y^{*}(T(x)) \pi_{1}^{\prime} \circ \cdots \circ \pi_{m-2}^{\prime}(T(x) \otimes(\cdots \cdots) \otimes T(x)) \\
& =\cdots \\
& =\left[y^{*}(T(x))\right]^{m-1} T(x) \\
& =\left[x^{*}(x)\right]^{m-1} T(x)
\end{aligned}
$$

Hence $P=T \circ \pi_{1} \circ \cdots \circ \pi_{m-1} \circ \delta_{m} \in \mathcal{P}_{\mathcal{L}[\mathcal{A}]}\left({ }^{m} X, Y\right)$ and then, by our hypothesis, it is left r-factorable. So its linearization $T \circ \pi_{1} \circ \cdots \circ \pi_{m-1}$ is also r-factorable. Now, for every $1 \leq p \leq m-1$, let $j_{p}: \otimes_{\pi, s}^{p} X \rightarrow \otimes_{\pi, s}^{p+1} X$ be the operator [3, page 168] such that $\pi_{p} \circ j_{p}$ is the identity on $\otimes_{\pi, s}^{p} X$. It follows that

$$
T=T \circ \pi_{1} \circ \cdots \circ \pi_{m-1} \circ j_{m-1} \circ \cdots \circ j_{1}
$$

is r-factorable.
If $r=1$, the statements are equivalent since $(\mathrm{b}) \Rightarrow(\mathrm{d})$ follows from Proposition 4 .

Remark 7. If $r>1$, the assertions of Theorem 6 are not equivalent. Indeed, the polynomial $Q \in \mathcal{P}\left({ }^{m} \ell_{2}, \ell_{1}\right)$, given by $Q(x):=\left(x_{n}^{m}\right)_{n=1}^{\infty}$, belongs to $\mathcal{P}_{\mathcal{L}\left[\Gamma_{2}\right]}\left({ }^{m} \ell_{2}, \ell_{1}\right)$. If $\mathcal{A}:=\Gamma_{2}$, Theorem 6(a) is satisfied, but $Q \notin \mathcal{P}_{2}^{m, \text { left }}\left(\ell_{2}, \ell_{1}\right)$, by Remark 5(b).

Corollary 8. Let X be a Banach space, and let $1 \leq r<\infty$. Consider the following assertions:
(a) for every Banach space Y, every r-summing operator $T: X \rightarrow Y$ is r-factorable;
(b) for every Banach space Y, for every $m \in \mathbb{N}(m \geq 2)$, every r-dominated polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is right r-factorable;
(c) there exists $m \in \mathbb{N}(m \geq 2)$ such that, for every Banach space Y, every r-dominated polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is right r-factorable;
(d) for every Banach space Y, for every $m \in \mathbb{N}(m \geq 2)$, every r-dominated polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is left r-factorable;
(e) there exists $m \in \mathbb{N}(m \geq 2)$ such that, for every Banach space Y, every r-dominated polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is left r-factorable.
Then $(\mathrm{d}) \Rightarrow(\mathrm{e}) \Rightarrow(\mathrm{a}) \Leftrightarrow(\mathrm{b}) \Leftrightarrow(\mathrm{c})$. If $r=1$, all the assertions are equivalent.
Proof. The result follows from Theorem 6 since the ideal of r-dominated polynomials coincides with $\mathcal{P}_{\mathcal{L}\left[\Pi_{r}\right]}$ (see, for instance, [8, Theorem 5] or [7, Theorem 5]).

Given a Banach space X, let \mathcal{F}_{X} denote the collection of all finite dimensional subspaces of X. We say that X has local unconditional structure (l.u.st., for short) [12, Chapter 17] if there is a constant $\Lambda \geq 1$ such that, for all $E \in \mathcal{F}_{X}$, the canonical embedding $E \hookrightarrow X$ has a factorization $E \xrightarrow{v} Y \xrightarrow{u} X$, through a Banach space Y with unconditional basis; u and v are operators satisfying $\|u\|\|v\| \operatorname{ub}(Y) \leq \Lambda$, where $\operatorname{ub}(Y)$ is the unconditional basis constant of Y. The smallest of all such Λ 's is called the l.u.st. constant of X, and is denoted by $\Lambda(X)$.

Every \mathcal{L}_{p}-space $(1 \leq p \leq \infty)$ and every Banach lattice have local unconditional structure [12, Theorem 17.1].

In the following lemma, the factorization result is well known (see [8, Theorem 5] or [7, Theorem 5]). We are interested here in the equality of the norms.

Lemma 9. A polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is r-dominated if and only if there are a Banach space Z, an r-summing operator $T \in \mathcal{L}(X, Z)$, and a polynomial $Q \in \mathcal{P}\left({ }^{m} Z, Y\right)$ such that $P=Q \circ T$. Moreover,

$$
\|P\|_{r-\mathrm{d}}=\inf \left\{\|Q\| \pi_{r}(T)^{m}: Q, T \text { as above }\right\}
$$

Proof. Let P be r-dominated. We know that it admits a factorization $P=Q \circ T$ as in the statement. For every $n \in \mathbb{N}$ and all $x_{1}, \ldots, x_{n} \in X$, we have

$$
\begin{aligned}
\left(\sum_{i=1}^{n}\left\|P\left(x_{i}\right)\right\|^{r / m}\right)^{\frac{m}{r}} & =\left(\sum_{i=1}^{n}\left\|Q T\left(x_{i}\right)\right\|^{r / m}\right)^{\frac{m}{r}} \\
& \leq\left[\sum_{i=1}^{n}\left(\|Q\|\left\|T\left(x_{i}\right)\right\|^{m}\right)^{\frac{r}{m}}\right]^{\frac{m}{r}} \\
& =\|Q\|\left(\sum_{i=1}^{n}\left\|T\left(x_{i}\right)\right\|^{r}\right)^{\frac{m}{r}} \\
& \leq\|Q\| \sup _{x^{*} \in B_{X^{*}}}\left(\sum_{i=1}^{n}\left|x^{*}\left(x_{i}\right)\right|^{r}\right)^{\frac{m}{r}} \pi_{r}(T)^{m}
\end{aligned}
$$

Hence,

$$
\|P\|_{r-\mathrm{d}} \leq\|Q\| \pi_{r}(T)^{m}
$$

Given $\epsilon>0$, by [18, Proposition 3.1], there are a constant $C_{\epsilon}>0$ with

$$
C_{\epsilon}<\|P\|_{r-\mathrm{d}}+\epsilon
$$

and a regular Borel probability measure μ_{ϵ} on $B_{X^{*}}$ such that

$$
\|P(x)\| \leq C_{\epsilon}\left[\int_{B_{X^{*}}}\left|x^{*}(x)\right|^{r} d \mu_{\epsilon}\left(x^{*}\right)\right]^{\frac{m}{r}} \quad(x \in X)
$$

Let $T_{0}: X \rightarrow L_{r}\left(B_{X^{*}}, \mu_{\epsilon}\right)$ be the operator given by

$$
T_{0}(x)\left(x^{*}\right):=x^{*}(x) \quad\left(x \in X, x^{*} \in B_{X^{*}}\right)
$$

Since, for $x \in X$,

$$
\begin{align*}
\left\|T_{0}(x)\right\| & =\left[\int_{B_{X^{*}}}\left|T_{0}(x)\left(x^{*}\right)\right|^{r} d \mu_{\epsilon}\left(x^{*}\right)\right]^{\frac{1}{r}} \\
& =\left[\int_{B_{X^{*}}}\left|x^{*}(x)\right|^{r} d \mu_{\epsilon}\left(x^{*}\right)\right]^{\frac{1}{r}} \tag{1}\\
& \leq\|x\|
\end{align*}
$$

T_{0} is continuous. Let $Z_{\epsilon}:=\overline{T_{0}(X)}$, that is, the closure of $T_{0}(X)$ in $L_{r}\left(B_{X^{*}}, \mu_{\epsilon}\right)$. Let

$$
T_{\epsilon}: X \longrightarrow Z_{\epsilon}
$$

be the operator defined by $T_{\epsilon}(x):=T_{0}(x)$ for all $x \in X$. By (1), T_{ϵ} is r-summing [12, Theorem 2.12], and $\pi_{r}\left(T_{\epsilon}\right) \leq 1$. Define a polynomial $Q_{0}: T_{0}(X) \rightarrow Y$ by

$$
Q_{0}\left(T_{0}(x)\right):=P(x)
$$

We have

$$
\begin{aligned}
\left\|Q_{0} T_{0}(x)\right\| & =\|P(x)\| \\
& \leq C_{\epsilon}\left[\int_{B_{X^{*}}}\left|x^{*}(x)\right|^{r} d \mu_{\epsilon}\left(x^{*}\right)\right]^{\frac{m}{r}} \\
& =C_{\epsilon}\left\|T_{0}(x)\right\|^{m},
\end{aligned}
$$

so Q_{0} is continuous with $\left\|Q_{0}\right\| \leq C_{\epsilon}$. Let Q_{ϵ} be the continuous extension of Q_{0} to Z_{ϵ} with $\left\|Q_{\epsilon}\right\|=\left\|Q_{0}\right\|$. Then $P=Q_{\epsilon} \circ T_{\epsilon}$, with $T_{\epsilon} r$-summing, and

$$
\left\|Q_{\epsilon}\right\| \pi_{r}\left(T_{\epsilon}\right)^{m} \leq\left\|Q_{0}\right\| \leq C_{\epsilon}<\|P\|_{r-\mathrm{d}}+\epsilon,
$$

and the proof is finished.
Corollary 10. Let X be a Banach space with l.u.st. Then, for every Banach space Y and every index $m \geq 2$, every 1-dominated polynomial $P \in \mathcal{P}\left({ }^{m} X, Y\right)$ is right 1-factorable, with $\gamma_{1}^{\text {right }}(P) \leq \Lambda(X)^{m}\|P\|_{1-\mathrm{d}}$.

Proof. By Lemma 9, there exist a Banach space Z, an absolutely summing operator $T \in \mathcal{L}(X, Z)$ and a polynomial $Q \in \mathcal{P}\left({ }^{m} Z, Y\right)$ such that $P=Q \circ T$. Since X has l.u.st., T is 1 -factorable [12, 17.7], so there exist a measure space (Ω, Σ, μ) and operators $A \in \mathcal{L}\left(X, L_{1}(\mu)\right), B \in \mathcal{L}\left(L_{1}(\mu), Z^{* *}\right)$ such that $k_{Z} \circ T=$ $B \circ A$. Moreover, $\gamma_{1}(T) \leq \Lambda(X) \pi_{1}(T)[12,17.7]$. As in the proof of Theorem 6 (see Figure 1, with $r=1$), using the Aron-Berner extension \widetilde{Q} of Q, we have

$$
k_{Y} \circ P=k_{Y} \circ Q \circ T=\widetilde{Q} \circ B \circ A .
$$

So P is right 1-factorable. Moreover, we observe that

$$
\gamma_{1}^{\text {right }}(P) \leq\|A\|^{m}\|\widetilde{Q} \circ B\| \leq\|Q\|\|A\|^{m}\| \| B \|^{m}
$$

where we have used the equality $\|\widetilde{Q}\|=\|Q\|[6$, Proposition 1.3]. Taking the infimum over A and B such that $k_{Z} \circ T=B \circ A$, we have

$$
\gamma_{1}^{\text {right }}(P) \leq\|Q\| \gamma_{1}(T)^{m} \leq\|Q\| \Lambda(X)^{m} \pi_{1}(T)^{m}
$$

Taking again the infimum over Q and T such that $P=Q \circ T$, by Lemma 9 , we obtain

$$
\gamma_{1}^{\text {right }}(P) \leq \Lambda(X)^{m}\|P\|_{1-\mathrm{d}},
$$

and the proof is finished.
Remark 11. The assertion (a) in Corollary 8 holds in particular:
(a) for every Banach space X when $r=2$ [12, Corollary 2.16];
(b) if X is an \mathcal{L}_{p}-space, with $1 \leq p \leq 2$, and $1<r<2$ since, in this case, every r-summing operator is also r-integral [12, Corollary 6.19], and then r-factorable;
(c) if X is a $C(K)$ space, for every $1 \leq r<\infty$, since in this case, every r summing operator is also r-integral [12, Corollary 5.8], and then r-factorable.

Remark 12. Every m-homogeneous integral polynomial on a $C(K)$ space is right m-factorable. Indeed, by [9, Lemma 1], P is m-dominated. By Corollary 8 and Remark 11(c), P is right m-factorable.

Corollary 13. Let X be an \mathcal{L}_{p}-space with $1 \leq p<\infty$ and let $m \in \mathbb{N}$. Every q-dominated m-homogeneous polynomial on X, with

$$
\frac{1}{q} \geq\left|\frac{1}{p}-\frac{1}{2}\right|
$$

is right 2-factorable.
Proof. It is enough to apply Theorem 6 since, under our hypothesis, for every Banach space Z, every q-summing operator $T \in \mathcal{L}(X, Z)$ is 2 -factorable [12, p. 168].

Recall that right 2-factorable implies right r-factorable, for every $1<r<\infty$, by [12, Corollary 9.2].

Corollary 14. Let X be a Banach space with l.u.st. and with cotype 2. Then, for every Banach space Y, every integral polynomial $P \in \mathcal{P}\left({ }^{2} X, Y\right)$ is right 1-factorable.
Proof. If $P \in \mathcal{P}\left({ }^{2} X, Y\right)$ is integral, it is also 2-dominated [9, Lemma 1]. So there exist a Banach space Z, a 2-summing operator $T \in \mathcal{L}(X, Z)$ and a polynomial $Q \in \mathcal{P}\left({ }^{2} Z, Y\right)$ such that $P=Q \circ T$. Since X has cotype $2, T$ is also absolutely summing [12, Corollary 11.16], and then P is 1 -dominated. By Corollary 10, P is right 1-factorable.

Proposition 15. Let X be a subspace of an \mathcal{L}_{p}-space $(1 \leq p \leq 2)$. Then, for every Banach space Y, every integral polynomial $P \in \mathcal{P}\left({ }^{2} X, Y\right)$ is right 1-factorable.

Proof. Let G be an \mathcal{L}_{p}-space $(1 \leq p \leq 2)$, let X be a subspace of G, and suppose that $P \in \mathcal{P}\left({ }^{2} X, Y\right)$ is an integral polynomial. As above, there exist a Banach space Z, a 2 -summing operator $T \in \mathcal{L}(X, Z)$ and a polynomial $Q \in \mathcal{P}\left({ }^{2} Z, Y\right)$ such that $P=Q \circ T$. The operator T admits a 2 -summing extension $\widetilde{T} \in \mathcal{L}(G, Z)$ [12, Theorem 4.15]. Since G has cotype $2, \widetilde{T}$ is absolutely summing [12, Corollary 11.16]. Then the polynomial $\widetilde{P}:=Q \circ \widetilde{T} \in \mathcal{P}\left({ }^{2} G, Y\right)$ is 1 -dominated. By Corollary 10, P is right 1 -factorable. So there exist a measure space (Ω, Σ, μ), an operator $A \in \mathcal{L}\left(G, L_{1}(\mu)\right)$ and a polynomial $R \in \mathcal{P}\left({ }^{2} L_{1}(\mu), Y^{* *}\right)$ such that $k_{Y} \circ \widetilde{P}=R \circ A$. Then

$$
k_{Y} \circ P=k_{Y} \circ Q \circ T=k_{Y} \circ Q \circ \widetilde{T} \circ i=k_{Y} \circ \widetilde{P} \circ i=R \circ A \circ i
$$

where i denotes the natural embedding of X into G. This finishes the proof.
Remark 16. There are subspaces of $L_{p}[0,1](1 \leq p<2)$ without l.u.st. [12, page 364], so the last result does not follow from Corollary 14.

In the following theorem, $\left(e_{n}\right)_{n=1}^{\infty}$ denotes the unit vector basis of ℓ_{1} (or ℓ_{2}).
Theorem 17. Let X be a Banach space containing a copy of ℓ_{1}. Then for every index $m \geq 2$, there exists a polynomial $P \in \mathcal{P}\left({ }^{m} X, \ell_{1}\right)$ that is not left r-factorable for any choice of $1<r \leq \infty$.

Proof. Since X contains a copy of ℓ_{1}, there exists a surjective 2 -summing operator $q \in \mathcal{L}\left(X, \ell_{2}\right)$ [12, Corollary 4.16]. Let $\left(x_{n}\right)$ be a bounded sequence in X such that $q\left(x_{n}\right)=e_{n}$ for all $n \in \mathbb{N}$. Let $Q \in \mathcal{P}\left({ }^{m} \ell_{2}, \ell_{1}\right)$ be the polynomial defined by

$$
Q(x):=\left(x_{k}^{m}\right)_{k=1}^{\infty} \quad \text { for } x=\left(x_{k}\right)_{k=1}^{\infty} \in \ell_{2} .
$$

Consider the polynomial $P:=Q \circ q \in \mathcal{P}\left({ }^{m} X, \ell_{1}\right)$. If P were left r-factorable for some $1<r \leq \infty$, then there would exist a positive measure space (Ω, Σ, μ), a polynomial $R \in \mathcal{P}\left({ }^{m} X, L_{r}(\mu)\right)$ and an operator $T \in \mathcal{L}\left(L_{r}(\mu), \ell_{\infty}^{*}\right)$ such that $k_{\ell_{1}} \circ P=T \circ R$. Let $H \in \mathcal{L}\left(\ell_{\infty}^{*}, \ell_{1}\right)$ be a projection such that $H \circ k_{\ell_{1}}$ is the identity map on ℓ_{1}. Then $P=H \circ k_{\ell_{1}} \circ P=H \circ T \circ R$. If $1<r<\infty$, $H \circ T \in \mathcal{L}\left(L_{r}(\mu), \ell_{1}\right)$ is a compact operator. The same happens if $r=\infty$ since,
in this case, $H \circ T$ is 2 -summing (and hence weakly compact) with values in ℓ_{1} [12, Theorem 11.14]. In both cases, P would be a compact polynomial, in contradiction with the fact that $P\left(x_{n}\right)=e_{n}$ for all $n \in \mathbb{N}$.

Remark 18. (a) The polynomial constructed in Theorem 17 is right 2-factorable, and so right r-factorable, for $1<r<\infty$, by [12, Corollary 9.2].
(b) Recall that X is said to be a GL-space if every absolutely summing operator from X into ℓ_{2} is 1-factorable. Suppose that at least one of the spaces X and Y is a GL-space, and that X^{*} and Y have cotype 2. Then $\mathcal{L}(X, Y)=\Gamma_{2}(X, Y)$ [12, Theorem 17.12]. The same conditions on the spaces X and Y do not imply the equality $\mathcal{P}\left({ }^{m} X, Y\right)=\mathcal{P}_{2}^{m, l e f t}(X, Y)$. Indeed, it is enough to apply Theorem 17 when $X=\ell_{\infty}$ and $Y=\ell_{1}$.
(c) In [10, Proposition 5.8] there are examples of nuclear m-homogeneous polynomials from ℓ_{∞} into ℓ_{1} that are not right 2-factorable, so we have $\mathcal{P}\left({ }^{m} \ell_{\infty}\right.$, $\left.\ell_{1}\right) \neq \mathcal{P}_{2}^{m, \text { right }}\left(\ell_{\infty}, \ell_{1}\right)$ in spite of the equality $\mathcal{L}\left(\ell_{\infty}, \ell_{1}\right)=\Gamma_{2}\left(\ell_{\infty}, \ell_{1}\right)$ [12, Theorem 17.12].

References

[1] R. Alencar, On reflexivity and basis for $P\left({ }^{m} E\right)$, Proc. Roy. Irish Acad. Sect. A $\mathbf{8 5}$ (1985), no. 2, 131-138.
[2] R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3-24.
[3] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997), no. 2, 165-173.
[4] G. Botelho, Ideals of polynomials generated by weakly compact operators, Note Mat. $\mathbf{2 5}$ (2005/06), no. 1, 69-102.
[5] G. Botelho and D. M. Pellegrino, Two new properties of ideals of polynomials and applications, Indag. Math. (N.S.) 16 (2005), no. 2, 157-169.
[6] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), no. 1, 359-372.
[7] R. Cilia, M. D'Anna, and J. M. Gutiérrez, Polynomials on Banach spaces whose duals are isomorphic to $l_{1}(\Gamma)$, Bull. Austral. Math. Soc. 70 (2004), no. 1, 117-124.
[8] R. Cilia and J. M. Gutiérrez, Polynomial characterization of Asplund spaces, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 3, 393-400.
[9] , Dominated, diagonal polynomials on l_{p} spaces, Arch. Math. (Basel) 84 (2005), no. 5, 421-431.
[10] _ Ideals of integral and r-factorable polynomials, to appear in Bol. Soc. Mat. Mexicana.
[11] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176. North-Holland Publishing Co., Amsterdam, 1993.
[12] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
[13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977.
[14] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 1999.
[15] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153-188.
[16] J. M. Gutiérrez and I. Villanueva, Extensions of multilinear operators and Banach space properties, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 549-566.
[17] J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_{p} spaces, Israel J. Math. 7 (1969), 325-349.
[18] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Brasil. Ciênc. 68 (1996), no. 1, 1-13.
[19] Y. Meléndez and A. Tonge, Polynomials and the Pietsch domination theorem, Math. Proc. R. Ir. Acad. 99A (1999), no. 2, 195-212.
[20] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Publishing Co., Amsterdam, 1986.
[21] R. A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Ph. D. Thesis, Trinity College, Dublin 1980.
[22] , Introduction to Tensor Products of Banach Spaces, Springer-Verlag London, Ltd., London, 2002.

Raffaella Cilia
Dipartimento di Matematica
Facoltà di Scienze
Università di Catania
Viale Andrea Doria 6
95125 Catania, Italy
E-mail address: cilia@dmi.unict.it
Joaquín M. Gutiérrez
Departamento de Matemática Aplicada
ETS de Ingenieros Industriales
Universidad Politécnica de Madrid
C. José Gutiérrez Abascal 2

28006 Madrid, Spain
E-mail address: jgutierrez@etsii.upm.es

[^0]: Received April 29, 2008.
 2000 Mathematics Subject Classification. Primary 46G25; Secondary 47H60.
 Key words and phrases. right r-factorable polynomial, left r-factorable polynomial, p dominated polynomial.

 The first named author was supported in part by G.N.A.M.P.A. (Italy).
 Both authors were supported in part by Dirección General de Investigación, MTM 200603531 (Spain).

