POLYNOMIAL FACTORIZATION THROUGH $L_r(\mu)$ SPACES

RAFFAELLA CILIA AND JOAQUÍN M. GUTIÉRREZ

ABSTRACT. We give conditions so that a polynomial be factorable through an $L_r(\mu)$ space. Among them, we prove that, given a Banach space X and an index m, every absolutely summing operator on X is 1-factorable if and only if every 1-dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated homogeneous polynomial on X is right and left 1-factorable.

We give conditions so that a homogeneous polynomial P between Banach spaces be factorable through an $L_r(\mu)$ -space, either in the form $P = Q \circ T$, where T is a (linear) operator and Q is a polynomial (right r-factorization), or in the form $P = T \circ Q$ (left r-factorization).

It is shown in particular that, given a Banach space X and an index m, every absolutely summing operator on X is 1-factorable if and only if every 1-dominated m-homogeneous polynomial on X is right 1-factorable, if and only if every 1-dominated m-homogeneous polynomial on X is left 1-factorable. As a consequence, if X has local unconditional structure, then every 1-dominated m-homogeneous polynomial on X is right and left 1-factorable.

Throughout, X, Y, Z denote Banach spaces, X^* is the dual of X, and B_X stands for its closed unit ball. The closed unit ball B_{X^*} will always be endowed with the weak-star topology. By \mathbb{N} we represent the set of all natural numbers, and by \mathbb{K} the scalar field (real or complex). We use the symbol $\mathcal{L}(X,Y)$ for the space of all (linear bounded) operators from X into Y endowed with the operator norm. Given a space Y we shall denote by k_Y the natural embedding of Y into its bidual Y^{**} .

Given $m \in \mathbb{N}$, we denote by $\mathcal{P}(^mX, Y)$ the space of all m-homogeneous (continuous) polynomials from X into Y endowed with the supremum norm. Recall that with each $P \in \mathcal{P}(^mX, Y)$ we can associate a unique symmetric

Received April 29, 2008.

²⁰⁰⁰ Mathematics Subject Classification. Primary 46G25; Secondary 47H60.

 $Key\ words\ and\ phrases.$ right r-factorable polynomial, left r-factorable polynomial, p-dominated polynomial.

The first named author was supported in part by G.N.A.M.P.A. (Italy).

Both authors were supported in part by Dirección General de Investigación, MTM 2006–03531 (Spain).

m-linear mapping $\widehat{P}: X \times \stackrel{(m)}{\dots} \times X \to Y$ so that

$$P(x) = \widehat{P}\left(x, \stackrel{(m)}{\dots}, x\right) \qquad (x \in X)$$

and we have

$$||P|| \le \left||\widehat{P}|\right| \le \frac{m^m}{m!} \, ||P|| \ .$$

Given a polynomial $P \in \mathcal{P}({}^{m}X, Y)$, its derivative is the polynomial

$$dP \in \mathcal{P}(^{m-1}X, \mathcal{L}(X, Y))$$

defined by

$$dP(x)(y) = m\widehat{P}\left(x, \overset{(m-1)}{\dots}, x, y\right) \qquad (x, y \in X).$$

For the general theory of multilinear mappings and polynomials on Banach spaces, we refer the reader to [14] and [20].

We use the notation $\otimes^m X := X \otimes \stackrel{(m)}{\dots} \otimes X$ for the m-fold tensor product of X, and $X \otimes_{\pi} Y$ (respectively, $X \otimes_{\epsilon} Y$) for the completed projective (respectively, injective) tensor product of X and Y (see [13] or [11] for the theory of tensor products).

By $\otimes_s^m X := X \otimes_s \stackrel{(m)}{\dots} \otimes_s X$ we denote the *m*-fold symmetric tensor product of X, that is, the set of all elements $u \in \otimes^m X$ of the form

$$u = \sum_{j=1}^{n} \lambda_j x_j \otimes \stackrel{(m)}{\dots} \otimes x_j \qquad (n \in \mathbb{N}, \ \lambda_j \in \mathbb{K}, \ x_j \in X, \ 1 \le j \le n).$$

By $\otimes_{\pi,s}^m X$ (respectively, $\otimes_{\epsilon,s}^m X$) we represent the space $\otimes_s^m X$ endowed with the topology induced by that of $\otimes_{\pi}^m X$ (respectively, $\otimes_{\epsilon}^m X$).

Given an operator $T \in \mathcal{L}(X,Y)$, we denote by

$$\otimes^m T: \otimes^m_{\pi} X \longrightarrow \otimes^m_{\pi} Y$$

the operator defined by

$$\otimes^m T(x_1 \otimes \cdots \otimes x_m) := T(x) \otimes \cdots \otimes T(x_m) \qquad (x_1, \dots, x_m \in X).$$

If $A: X_1 \times \cdots \times X_m \to Y$ is an m-linear mapping, the linearization of A is the operator

$$\overline{A}: X_1 \otimes_{\pi} \cdots \otimes_{\pi} X_m \longrightarrow Y$$

given by

$$\overline{A}\left(\sum_{j=1}^n x_{1,j}\otimes\cdots\otimes x_{m,j}\right)=\sum_{j=1}^n A(x_{1,j},\ldots,x_{m,j})$$

for all $x_{k,j} \in X_k$ (1 $\leq k \leq m, 1 \leq j \leq n$) [21, p. 24]. Moreover, $||A|| = ||\overline{A}||$ [15, 2.1].

For a polynomial $P \in \mathcal{P}(^{m}X, Y)$, its linearization

$$\overline{P}: \otimes_{\pi.s}^m X \longrightarrow Y$$

is the operator given by

$$\overline{P}\left(\sum_{j=1}^n \lambda_j x_j \otimes \stackrel{(m)}{\dots} \otimes x_j\right) = \sum_{j=1}^n \lambda_j P(x_j)$$

for all $x_j \in X$ and $\lambda_j \in \mathbb{K}$ $(1 \leq j \leq n)$. By $\delta_m : X \to \otimes_{\pi}^m X$ we denote the canonical polynomial given by

$$\delta_m(x) := x \otimes \stackrel{(m)}{\dots} \otimes x \qquad (x \in X).$$

Given $1 \leq r < \infty$, a polynomial $P \in \mathcal{P}(^mX, Y)$ is r-dominated (see, e.g., [19]) if there exists a constant k > 0 such that, for all $n \in \mathbb{N}$ and $(x_i)_{i=1}^n \subset X$,

$$\left(\sum_{i=1}^{n} \|P(x_i)\|^{\frac{r}{m}}\right)^{\frac{m}{r}} \le k \sup_{x^* \in B_{X^*}} \left(\sum_{i=1}^{n} |x^*(x_i)|^r\right)^{\frac{m}{r}}.$$

The infimum of the constants k that verify this definition is called the rdominated quasinorm of P and will be denoted by $||P||_{r-d}$ (it is a norm if and only if $r \geq m$).

Note that, for m=1, we obtain the ideal (Π_r, π_r) of (absolutely) r-summing operators. If m = 1 and r = 1, we obtain the class of absolutely summing operators.

A polynomial $P \in \mathcal{P}(^mX, Y)$ is integral [1] if there exists a regular countably additive, Y^{**} -valued Borel measure \mathcal{G} of bounded variation on B_{X^*} such that

$$P(x) = \int_{B_{X^*}} [x^*(x)]^m \, d\mathcal{G}(x^*) \qquad (x \in X) \; .$$

A polynomial $P \in \mathcal{P}(^{m}X, Y)$ is nuclear [1] if it can be written in the form

$$P(x) = \sum_{i=1}^{\infty} x_i^*(x)^m y_i \qquad (x \in X),$$

where $(x_i^*) \subset X^*$ and $(y_i) \subset Y$ are bounded sequences such that

$$\sum_{i=1}^{\infty} \|x_i^*\|^m \|y_i\| < \infty.$$

It is well known that every nuclear polynomial is integral.

The definition of ideal of polynomials may be seen, for instance, in [5].

For the notion and main properties of \mathcal{L}_p -spaces $(1 \leq p \leq \infty)$, we refer the reader to [17].

Definition 1 ([5]). Let \mathcal{Q} be an ideal of polynomials. We say that

(a) Q is closed under differentiation if, for every $m \in \mathbb{N}$, all Banach spaces X and Y, and every polynomial $P \in \mathcal{Q}(^mX,Y)$, we have $dP(a) \in \mathcal{Q}(X,Y)$ for every $a \in X$;

(b) Q is closed for scalar multiplication if, for every $m \in \mathbb{N}$, all Banach spaces X and Y, and every polynomial $P \in Q(^mX,Y)$, we have $\phi P \in Q(^{m+1}X,Y)$ for every $\phi \in X^*$.

Definition 2 ([10]). Given a polynomial $P \in \mathcal{P}(^mX, Y)$ and $1 \leq r \leq \infty$, we say that P is *left r-factorable* if there exist a positive measure space (Ω, Σ, μ) , a polynomial $Q \in \mathcal{P}(^mX, L_r(\mu))$, and an operator $T \in \mathcal{L}(L_r(\mu), Y^{**})$ such that $k_Y \circ P = T \circ Q$.

$$X \xrightarrow{P} Y$$

$$Q \downarrow \qquad \qquad \downarrow k_Y$$

$$L_r(\mu) \xrightarrow{T} Y^{**}$$

In this case we set

$$\gamma_r^{\text{left}}(P) := \inf\{\|Q\|\|T\| \text{ for } Q, T \text{ as above}\}$$
 .

We denote by $\mathcal{P}_r^{m,\text{left}}(X,Y)$ the subspace of all $P \in \mathcal{P}(^m\!X,Y)$ which are left r-factorable.

Definition 3 ([10]). Given a polynomial $P \in \mathcal{P}({}^mX,Y)$ and $1 \leq r \leq \infty$, we say that P is right r-factorable if there exist a positive measure space (Ω, Σ, μ) , a polynomial $Q \in \mathcal{P}({}^mL_r(\mu), Y^{**})$, and an operator $T \in \mathcal{L}(X, L_r(\mu))$ such that $k_Y \circ P = Q \circ T$.

$$X \xrightarrow{P} Y$$

$$T \downarrow \qquad \qquad \downarrow k_Y$$

$$L_r(\mu) \xrightarrow{Q} Y^{**}$$

In this case we set

$$\gamma_r^{\text{right}}(P) := \inf\{\|Q\| \|T\|^m \text{ for } Q, T \text{ as above}\}.$$

We denote by $\mathcal{P}_r^{m,\mathrm{right}}(X,Y)$ the subspace of all $P \in \mathcal{P}(^mX,Y)$ which are right r-factorable.

Recall [12, Chapter 7] that an operator $T \in \mathcal{L}(X,Y)$ is r-factorable if there exist a measure space (Ω, Σ, μ) and operators $b : L_r(\mu) \to Y^{**}$ and $a : X \to L_r(\mu)$ such that $k_Y \circ T = b \circ a$.

In this case, we write

$$\gamma_r(T) := \inf \|a\| \|b\|,$$

where the infimum extends over all factorizations of T as above; γ_r is a norm on the space $\Gamma_r(X,Y)$ of all r-factorable operators from X into Y.

Proposition 4. If a polynomial $P \in \mathcal{P}(^mX,Y)$ is right 1-factorable, then it is also left 1-factorable, and

$$\gamma_1^{\text{left}}(P) \le \frac{m^m}{m!} \, \gamma_1^{\text{right}}(P) \,.$$

Proof. There exist a positive measure space (Ω, Σ, μ) , a polynomial

$$Q \in \mathcal{P}(^mL_1(\mu), Y^{**})$$

and an operator $T \in \mathcal{L}(X, L_1(\mu))$ such that $k_Y \circ P = Q \circ T$.

$$\begin{array}{ccc} X & \stackrel{P}{\longrightarrow} & Y \\ \downarrow & & \downarrow k_Y \\ L_1(\mu) & \stackrel{Q}{\longrightarrow} & Y^{**} \end{array}$$

Using the polarization formula [20, Theorem 1.10], we have for $x_1, \ldots, x_m \in X$:

$$k_{Y} \circ \widehat{P}(x_{1}, \dots, x_{m}) = k_{Y} \left(\frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j} = \pm 1 \\ 1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} P(\epsilon_{1}x_{1} + \dots + \epsilon_{m}x_{m}) \right)$$

$$= \frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j} = \pm 1 \\ 1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} k_{Y} \circ P(\epsilon_{1}x_{1} + \dots + \epsilon_{m}x_{m})$$

$$= \frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j} = \pm 1 \\ 1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} Q \circ T(\epsilon_{1}x_{1} + \dots + \epsilon_{m}x_{m})$$

$$= \frac{1}{m!2^{m}} \sum_{\substack{\epsilon_{j} = \pm 1 \\ 1 \leq j \leq m}} \epsilon_{1} \cdots \epsilon_{m} Q(\epsilon_{1}T(x_{1}) + \dots + \epsilon_{m}T(x_{m}))$$

$$= \widehat{Q}(T(x_{1}), \dots, T(x_{m}))$$

$$= \widehat{Q}(T, \dots, T)(x_{1}, \dots, x_{m}).$$

It follows that

$$\overline{k_Y \circ \widehat{P}} = \overline{\widehat{Q}} \circ (\otimes^m T).$$

Therefore (see the diagram below)

$$k_Y \circ \overline{P} = \overline{k_Y \circ P} = \overline{k_Y \circ \widehat{P}} \circ i = \overline{\widehat{Q}} \circ (\otimes^m T) \circ i \,,$$

where i denotes the natural inclusion of $\otimes_{\pi,s}^m X$ into $\otimes_{\pi}^m X$.

$$\begin{array}{ccc} \otimes_{\pi,s}^{m} X & \xrightarrow{k_{Y} \circ \overline{P}} & Y^{**} \\ \downarrow & & \uparrow \overline{\widehat{Q}} \\ \otimes_{\pi}^{m} X & \xrightarrow{\otimes^{m} T} \otimes_{\pi}^{m} L_{1}(\mu) \end{array}$$

Since $\otimes_{\pi}^m L_1(\mu)$ is an $L_1(\mu')$ space [22, Exercise 2.8], \overline{P} is 1-factorable. Then $P = \overline{P} \circ \delta_m$ is left 1-factorable. Moreover, from the equality

$$k_Y \circ P = k_Y \circ \overline{P} \circ \delta_m = \overline{\widehat{Q}} \circ (\otimes^m T) \circ i \circ \delta_m$$

we have

$$\begin{split} \gamma_1^{\text{left}}(P) &\leq \|\delta_m\| \left\| \overline{\widehat{Q}} \circ (\otimes^m T) \circ i \right\| \\ &\leq \left\| \overline{\widehat{Q}} \right\| \|T\|^m \quad [11, \text{ Ex } 3.2] \\ &= \left\| \widehat{Q} \right\| \|T\|^m \\ &\leq \frac{m^m}{m!} \|Q\| \|T\|^m \, . \end{split}$$

Since the factorization $k_Y \circ P = Q \circ T$ is arbitrary, we get

$$\gamma_1^{\text{left}}(P) \leq \frac{m^m}{m!} \, \gamma_1^{\text{right}}(P) \,,$$

and the proof is finished.

Remark 5.

- (a) There are many left 1-factorable polynomials that are not right 1-factorable. Indeed, it is proved in [10, Theorem 2.3] that every integral polynomial is left 1-factorable so, in particular, a nuclear polynomial is left 1-factorable; however, there are many nuclear polynomials that are not right 1-factorable [10, Propositions 5.8 and 5.9].
- (b) The polynomial $Q \in \mathcal{P}(^2\ell_2,\ell_1)$ defined by $Q(x) := (x_k^2)_k$ is obviously left 1-factorable, but it is not integral (otherwise, it would be compact). Moreover, it is right 2-factorable (and then right r-factorable for every r > 1 [12, Corollary 9.2]), but it is not left 2-factorable: indeed, this would imply that Q is compact.

Given an operator ideal \mathcal{A} , a polynomial $P \in \mathcal{P}(^mX,Y)$ is said to be of type $\mathcal{P}_{\mathcal{L}[\mathcal{A}]}$ if there exist a Banach space Z, an operator $T \in \mathcal{A}(X,Z)$, and a polynomial $Q \in \mathcal{P}(^mZ,Y)$ such that $P = Q \circ T$ [4].

Theorem 6. Let A be an operator ideal, and let $1 \le r \le \infty$. Let X be a Banach space. Consider the following statements:

- (a) for every Banach space Y, $\mathcal{A}(X,Y) \subseteq \Gamma_r(X,Y)$;
- (b) for every Banach space Y and for every index $m \geq 2$, $\mathcal{P}_{\mathcal{L}[\mathcal{A}]}(^mX, Y) \subseteq \mathcal{P}_{r}^{m, \text{right}}(X, Y)$;
- (c) there exists an index $m \geq 2$ such that, for every Banach space Y,

$$\mathcal{P}_{\mathcal{L}[A]}(^mX,Y) \subseteq \mathcal{P}_r^{m,\mathrm{right}}(X,Y);$$

(d) for every Banach space Y and for every index $m \geq 2$,

$$\mathcal{P}_{\mathcal{L}[\mathcal{A}]}(^{m}X,Y) \subseteq \mathcal{P}_{r}^{m,\text{left}}(X,Y);$$

(e) there exists an index $m \geq 2$ such that, for every Banach space Y,

$$\mathcal{P}_{\mathcal{L}[\mathcal{A}]}(^{m}X,Y) \subseteq \mathcal{P}_{r}^{m,\operatorname{left}}(X,Y).$$

Then, (d) \Rightarrow (e) \Rightarrow (a) \Leftrightarrow (b) \Leftrightarrow (c). Moreover, if r=1, all the statements are equivalent.

Proof. (a) \Rightarrow (b). Given $m \in \mathbb{N}$ ($m \geq 2$) and a Banach space Y, let $P \in \mathcal{P}_{\mathcal{L}[\mathcal{A}]}(^mX,Y)$. By [5, Proposition 1], $P \in \mathcal{P}_{\mathcal{L}[\Gamma_r]}(^mX,Y)$. Then there exist a Banach space Z, an operator $T \in \Gamma_r(X,Z)$, and a polynomial $Q \in \mathcal{P}(^mZ,Y)$ such that $P = Q \circ T$. Since T is r-factorable, there exist a measure space (Ω, Σ, μ) and operators $A \in \mathcal{L}(X, L_r(\mu)), B \in \mathcal{L}(L_r(\mu), Z^{**})$ such that $k_Z \circ T = B \circ A$. Moreover, $\gamma_r(T) \leq ||B|| ||A||$. Let \widetilde{Q} be the Aron-Berner extension of Q [2] (see also [16]). We have (see Figure 1)

$$k_Y \circ P = k_Y \circ Q \circ T = \widetilde{Q} \circ k_Z \circ T = \widetilde{Q} \circ B \circ A.$$

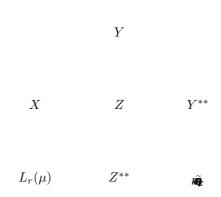


FIGURE 1. Factorization of $k_Y \circ P$

So P is right r-factorable.

- (b) \Rightarrow (c). It is obvious.
- (c) \Rightarrow (a). We show that the ideal $\mathcal{P}_r^{m,\mathrm{right}}$ is closed under differentiation. Indeed, let $P \in \mathcal{P}_r^{m,\mathrm{right}}(X,Y)$. Fix $a \in X$. We have to prove that dP(a) is r-factorable. Clearly, $k_Y \circ dP(a) = d(k_Y \circ P)(a)$. By our hypothesis, there exist a positive measure space (Ω, Σ, μ) , a polynomial $Q \in \mathcal{P}(^mL_r(\mu), Y^{**})$, and an operator $T \in \mathcal{L}(X, L_r(\mu))$ such that $k_Y \circ P = Q \circ T$.

$$X \xrightarrow{P} Y$$

$$T \downarrow \qquad \qquad \downarrow k_Y$$

$$L_r(\mu) \xrightarrow{Q} Y^{**}$$

Define the operator $A: L_r(\mu) \to Y^{**}$ by

$$A(z) = \widehat{Q}(T(a), \stackrel{(m-1)}{\dots}, T(a), z) \qquad (z \in L_r(\mu)).$$

In particular, for every $x \in X$,

$$A(T(x)) = \widehat{Q}(T(a), \stackrel{(m-1)}{\dots}, T(a), T(x))$$

$$= \widehat{k_Y} \circ P(a, \stackrel{(m-1)}{\dots}, a, x)$$

$$= \frac{1}{m} d(k_Y \circ P)(a)(x)$$

$$= \frac{1}{m} k_Y \circ dP(a)(x).$$

Hence

$$\frac{1}{m}k_Y \circ dP(a) = A \circ T,$$

and dP(a) is r-factorable. Since the ideal $\mathcal{P}_{\mathcal{L}[\mathcal{A}]}$ is closed for scalar multiplication [5, Lemma 1], (a) follows from [5, Proposition 2].

 $(d) \Rightarrow (e)$. It is obvious.

(e) \Rightarrow (a). Let $T \in \mathcal{A}(X,Y)$. Let $x_0 \in X$ and $y_0 = T(x_0) \neq 0$. Choose $y^* \in Y^*$ such that $y^*(y_0) = 1$. Let $x^* = T^*(y^*)$. So $x^*(x_0) = 1$. For every $1 \leq j \leq m-1$, we introduce the operators $\pi_j : \otimes_{\pi,s}^{j+1} X \to \otimes_{\pi,s}^j X$ and $\pi'_j : \otimes_{\pi,s}^{j+1} Y \to \otimes_{\pi,s}^j Y$, given in [3] by

$$\pi_{j}\left(\sum_{i=1}^{r} \lambda_{i} x_{i} \otimes \stackrel{(j+1)}{\dots} \otimes x_{i}\right)$$

$$= \sum_{i=1}^{r} \lambda_{i} x^{*}(x_{i}) x_{i} \otimes \stackrel{(j)}{\dots} \otimes x_{i} \quad (\lambda_{i} \in \mathbb{K}, \ x_{i} \in X, \ 1 \leq i \leq r)$$

and

$$\pi'_{j} \left(\sum_{i=1}^{r} \lambda_{i} y_{i} \otimes \stackrel{(j+1)}{\dots} \otimes y_{i} \right)$$

$$= \sum_{i=1}^{r} \lambda_{i} y^{*}(y_{i}) y_{i} \otimes \stackrel{(j)}{\dots} \otimes y_{i} \quad (\lambda_{i} \in \mathbb{K}, \ y_{i} \in Y, \ 1 \leq i \leq r) \ .$$

Consider the polynomials

$$P := T \circ \pi_1 \circ \cdots \circ \pi_{m-1} \circ \delta_m \in \mathcal{P}(^mX, Y)$$

and

$$Q := \pi'_1 \circ \cdots \circ \pi'_{m-1} \circ \delta'_m \circ T \in \mathcal{P}(^mX, Y),$$

where $\delta_m: X \to \otimes_{\pi,s}^m X$ and $\delta_m': Y \to \otimes_{\pi,s}^m Y$ are the canonical polynomials. We have P = Q. Indeed, for $x \in X$,

$$P(x) = T \circ \pi_1 \circ \cdots \circ \pi_{m-1} \circ \delta_m(x)$$

$$= T \circ \pi_1 \circ \cdots \circ \pi_{m-1} \left(x \otimes \overset{(m)}{\dots} \otimes x \right)$$

$$= [x^*(x)]T \circ \pi_1 \circ \cdots \circ \pi_{m-2} \left(x \otimes \overset{(m-1)}{\dots} \otimes x \right)$$

$$= \cdots$$

$$= T(x)[x^*(x)]^{m-1}.$$

On the other hand,

$$Q(x) = \pi'_1 \circ \cdots \circ \pi'_{m-1} \circ \delta'_m \circ T(x)$$

$$= \pi'_1 \circ \cdots \circ \pi'_{m-1} \left(T(x) \otimes \stackrel{(m)}{\dots} \otimes T(x) \right)$$

$$= y^*(T(x))\pi'_1 \circ \cdots \circ \pi'_{m-2} \left(T(x) \otimes \stackrel{(m-1)}{\dots} \otimes T(x) \right)$$

$$= \cdots$$

$$= [y^*(T(x))]^{m-1}T(x)$$

$$= [x^*(x)]^{m-1}T(x).$$

Hence $P = T \circ \pi_1 \circ \cdots \circ \pi_{m-1} \circ \delta_m \in \mathcal{P}_{\mathcal{L}[\mathcal{A}]}(^mX, Y)$ and then, by our hypothesis, it is left r-factorable. So its linearization $T \circ \pi_1 \circ \cdots \circ \pi_{m-1}$ is also r-factorable. Now, for every $1 \leq p \leq m-1$, let $j_p : \otimes_{\pi,s}^p X \to \otimes_{\pi,s}^{p+1} X$ be the operator [3, page 168] such that $\pi_p \circ j_p$ is the identity on $\otimes_{\pi}^p {}_s X$. It follows that

$$T = T \circ \pi_1 \circ \cdots \circ \pi_{m-1} \circ j_{m-1} \circ \cdots \circ j_1$$

is r-factorable.

If r = 1, the statements are equivalent since (b) \Rightarrow (d) follows from Proposition 4.

Remark 7. If r > 1, the assertions of Theorem 6 are not equivalent. Indeed, the polynomial $Q \in \mathcal{P}(^m\ell_2,\ell_1)$, given by $Q(x) := (x_n^m)_{n=1}^{\infty}$, belongs to $\mathcal{P}_{\mathcal{L}[\Gamma_2]}(^m\ell_2,\ell_1)$. If $\mathcal{A} := \Gamma_2$, Theorem 6(a) is satisfied, but $Q \notin \mathcal{P}_2^{m,\text{left}}(\ell_2,\ell_1)$, by Remark 5(b).

Corollary 8. Let X be a Banach space, and let $1 \le r < \infty$. Consider the following assertions:

- (a) for every Banach space Y, every r-summing operator $T:X\to Y$ is r-factorable;
- (b) for every Banach space Y, for every $m \in \mathbb{N}$ $(m \ge 2)$, every r-dominated polynomial $P \in \mathcal{P}(^mX, Y)$ is right r-factorable;
- (c) there exists $m \in \mathbb{N}$ $(m \ge 2)$ such that, for every Banach space Y, every r-dominated polynomial $P \in \mathcal{P}(^mX, Y)$ is right r-factorable;

- (d) for every Banach space Y, for every $m \in \mathbb{N}$ $(m \ge 2)$, every r-dominated polynomial $P \in \mathcal{P}(^mX, Y)$ is left r-factorable;
- (e) there exists $m \in \mathbb{N}$ $(m \ge 2)$ such that, for every Banach space Y, every r-dominated polynomial $P \in \mathcal{P}(^mX, Y)$ is left r-factorable.

Then $(d) \Rightarrow (e) \Rightarrow (a) \Leftrightarrow (b) \Leftrightarrow (c)$. If r = 1, all the assertions are equivalent.

Proof. The result follows from Theorem 6 since the ideal of r-dominated polynomials coincides with $\mathcal{P}_{\mathcal{L}[\Pi_r]}$ (see, for instance, [8, Theorem 5] or [7, Theorem 5]).

Given a Banach space X, let \mathcal{F}_X denote the collection of all finite dimensional subspaces of X. We say that X has local unconditional structure (l.u.st., for short) [12, Chapter 17] if there is a constant $\Lambda \geq 1$ such that, for all $E \in \mathcal{F}_X$, the canonical embedding $E \hookrightarrow X$ has a factorization $E \stackrel{v}{\to} Y \stackrel{u}{\to} X$, through a Banach space Y with unconditional basis; u and v are operators satisfying $\|u\| \|v\|$ ub $(Y) \leq \Lambda$, where ub(Y) is the unconditional basis constant of Y. The smallest of all such Λ 's is called the l.u.st. constant of X, and is denoted by $\Lambda(X)$.

Every \mathcal{L}_p -space $(1 \leq p \leq \infty)$ and every Banach lattice have local unconditional structure [12, Theorem 17.1].

In the following lemma, the factorization result is well known (see [8, Theorem 5] or [7, Theorem 5]). We are interested here in the equality of the norms.

Lemma 9. A polynomial $P \in \mathcal{P}(^mX,Y)$ is r-dominated if and only if there are a Banach space Z, an r-summing operator $T \in \mathcal{L}(X,Z)$, and a polynomial $Q \in \mathcal{P}(^mZ,Y)$ such that $P = Q \circ T$. Moreover,

$$||P||_{r-d} = \inf\{||Q|| \pi_r(T)^m : Q, T \text{ as above}\}.$$

Proof. Let P be r-dominated. We know that it admits a factorization $P = Q \circ T$ as in the statement. For every $n \in \mathbb{N}$ and all $x_1, \ldots, x_n \in X$, we have

$$\left(\sum_{i=1}^{n} \|P(x_i)\|^{r/m}\right)^{\frac{m}{r}} = \left(\sum_{i=1}^{n} \|QT(x_i)\|^{r/m}\right)^{\frac{m}{r}}$$

$$\leq \left[\sum_{i=1}^{n} (\|Q\| \|T(x_i)\|^m)^{\frac{r}{m}}\right]^{\frac{m}{r}}$$

$$= \|Q\| \left(\sum_{i=1}^{n} \|T(x_i)\|^r\right)^{\frac{m}{r}}$$

$$\leq \|Q\| \sup_{x^* \in B_{X^*}} \left(\sum_{i=1}^{n} |x^*(x_i)|^r\right)^{\frac{m}{r}} \pi_r(T)^m.$$

Hence,

$$||P||_{r-d} \leq ||Q|| \pi_r(T)^m$$
.

Given $\epsilon > 0$, by [18, Proposition 3.1], there are a constant $C_{\epsilon} > 0$ with

$$C_{\epsilon} < \|P\|_{r-\mathrm{d}} + \epsilon$$

and a regular Borel probability measure μ_{ϵ} on B_{X^*} such that

$$||P(x)|| \le C_{\epsilon} \left[\int_{B_{X^*}} |x^*(x)|^r d\mu_{\epsilon}(x^*) \right]^{\frac{m}{r}} \qquad (x \in X).$$

Let $T_0: X \to L_r(B_{X^*}, \mu_{\epsilon})$ be the operator given by

$$T_0(x)(x^*) := x^*(x) \qquad (x \in X, \ x^* \in B_{X^*}).$$

Since, for $x \in X$,

(1)
$$||T_0(x)|| = \left[\int_{B_{X^*}} |T_0(x)(x^*)|^r d\mu_{\epsilon}(x^*) \right]^{\frac{1}{r}}$$

$$= \left[\int_{B_{X^*}} |x^*(x)|^r d\mu_{\epsilon}(x^*) \right]^{\frac{1}{r}}$$

$$\leq ||x||,$$

 T_0 is continuous. Let $Z_{\epsilon} := \overline{T_0(X)}$, that is, the closure of $T_0(X)$ in $L_r(B_{X^*}, \mu_{\epsilon})$. Let

$$T_{\epsilon}: X \longrightarrow Z_{\epsilon}$$

be the operator defined by $T_{\epsilon}(x) := T_0(x)$ for all $x \in X$. By (1), T_{ϵ} is r-summing [12, Theorem 2.12], and $\pi_r(T_{\epsilon}) \leq 1$. Define a polynomial $Q_0 : T_0(X) \to Y$ by

$$Q_0(T_0(x)) := P(x).$$

We have

$$||Q_0 T_0(x)|| = ||P(x)||$$

$$\leq C_{\epsilon} \left[\int_{B_{X^*}} |x^*(x)|^r d\mu_{\epsilon}(x^*) \right]^{\frac{m}{r}}$$

$$= C_{\epsilon} ||T_0(x)||^m,$$

so Q_0 is continuous with $||Q_0|| \leq C_{\epsilon}$. Let Q_{ϵ} be the continuous extension of Q_0 to Z_{ϵ} with $||Q_{\epsilon}|| = ||Q_0||$. Then $P = Q_{\epsilon} \circ T_{\epsilon}$, with T_{ϵ} r-summing, and

$$||Q_{\epsilon}|| \pi_r(T_{\epsilon})^m \le ||Q_0|| \le C_{\epsilon} < ||P||_{r-d} + \epsilon$$

and the proof is finished.

Corollary 10. Let X be a Banach space with l.u.st. Then, for every Banach space Y and every index $m \geq 2$, every 1-dominated polynomial $P \in \mathcal{P}(^mX,Y)$ is right 1-factorable, with $\gamma_1^{\text{right}}(P) \leq \Lambda(X)^m \|P\|_{1-d}$.

Proof. By Lemma 9, there exist a Banach space Z, an absolutely summing operator $T \in \mathcal{L}(X,Z)$ and a polynomial $Q \in \mathcal{P}(^mZ,Y)$ such that $P = Q \circ T$. Since X has l.u.st., T is 1-factorable [12, 17.7], so there exist a measure space (Ω, Σ, μ) and operators $A \in \mathcal{L}(X, L_1(\mu))$, $B \in \mathcal{L}(L_1(\mu), Z^{**})$ such that $k_Z \circ T = B \circ A$. Moreover, $\gamma_1(T) \leq \Lambda(X)\pi_1(T)$ [12, 17.7]. As in the proof of Theorem 6 (see Figure 1, with r = 1), using the Aron-Berner extension \widetilde{Q} of Q, we have

$$k_Y \circ P = k_Y \circ Q \circ T = \widetilde{Q} \circ B \circ A$$
.

So P is right 1-factorable. Moreover, we observe that

$$\gamma_1^{\mathrm{right}}(P) \leq \|A\|^m \left\|\widetilde{Q} \circ B\right\| \leq \|Q\| \|A\|^m \|\|B\|^m \,,$$

where we have used the equality $\left\|\widetilde{Q}\right\| = \|Q\|$ [6, Proposition 1.3]. Taking the infimum over A and B such that $k_Z \circ T = B \circ A$, we have

$$\gamma_1^{\text{right}}(P) \le ||Q|| \gamma_1(T)^m \le ||Q|| \Lambda(X)^m \pi_1(T)^m$$
.

Taking again the infimum over Q and T such that $P=Q\circ T,$ by Lemma 9, we obtain

$$\gamma_1^{\text{right}}(P) \leq \Lambda(X)^m ||P||_{1-d}$$
,

and the proof is finished.

Remark 11. The assertion (a) in Corollary 8 holds in particular:

- (a) for every Banach space X when r = 2 [12, Corollary 2.16];
- (b) if X is an \mathcal{L}_p -space, with $1 \leq p \leq 2$, and 1 < r < 2 since, in this case, every r-summing operator is also r-integral [12, Corollary 6.19], and then r-factorable;
- (c) if X is a C(K) space, for every $1 \le r < \infty$, since in this case, every r-summing operator is also r-integral [12, Corollary 5.8], and then r-factorable.

Remark 12. Every m-homogeneous integral polynomial on a C(K) space is right m-factorable. Indeed, by [9, Lemma 1], P is m-dominated. By Corollary 8 and Remark 11(c), P is right m-factorable.

Corollary 13. Let X be an \mathcal{L}_p -space with $1 \leq p < \infty$ and let $m \in \mathbb{N}$. Every q-dominated m-homogeneous polynomial on X, with

$$\frac{1}{q} \ge \left| \frac{1}{p} - \frac{1}{2} \right| \,,$$

 $is\ right\ 2\hbox{-}factorable.$

Proof. It is enough to apply Theorem 6 since, under our hypothesis, for every Banach space Z, every q-summing operator $T \in \mathcal{L}(X, Z)$ is 2-factorable [12, p. 168].

Recall that right 2-factorable implies right r-factorable, for every $1 < r < \infty$, by [12, Corollary 9.2].

Corollary 14. Let X be a Banach space with l.u.st. and with cotype 2. Then, for every Banach space Y, every integral polynomial $P \in \mathcal{P}(^2X,Y)$ is right 1-factorable.

Proof. If $P \in \mathcal{P}(^2X, Y)$ is integral, it is also 2-dominated [9, Lemma 1]. So there exist a Banach space Z, a 2-summing operator $T \in \mathcal{L}(X, Z)$ and a polynomial $Q \in \mathcal{P}(^2Z, Y)$ such that $P = Q \circ T$. Since X has cotype 2, T is also absolutely summing [12, Corollary 11.16], and then P is 1-dominated. By Corollary 10, P is right 1-factorable.

Proposition 15. Let X be a subspace of an \mathcal{L}_p -space $(1 \leq p \leq 2)$. Then, for every Banach space Y, every integral polynomial $P \in \mathcal{P}(^2X,Y)$ is right 1-factorable.

Proof. Let G be an \mathcal{L}_p -space $(1 \leq p \leq 2)$, let X be a subspace of G, and suppose that $P \in \mathcal{P}(^2X,Y)$ is an integral polynomial. As above, there exist a Banach space Z, a 2-summing operator $T \in \mathcal{L}(X,Z)$ and a polynomial $Q \in \mathcal{P}(^2Z,Y)$ such that $P = Q \circ T$. The operator T admits a 2-summing extension $\widetilde{T} \in \mathcal{L}(G,Z)$ [12, Theorem 4.15]. Since G has cotype 2, \widetilde{T} is absolutely summing [12, Corollary 11.16]. Then the polynomial $\widetilde{P} := Q \circ \widetilde{T} \in \mathcal{P}(^2G,Y)$ is 1-dominated. By Corollary 10, P is right 1-factorable. So there exist a measure space (Ω, Σ, μ) , an operator $A \in \mathcal{L}(G, L_1(\mu))$ and a polynomial $R \in \mathcal{P}(^2L_1(\mu), Y^{**})$ such that $k_Y \circ \widetilde{P} = R \circ A$. Then

$$k_Y \circ P = k_Y \circ Q \circ T = k_Y \circ Q \circ \widetilde{T} \circ i = k_Y \circ \widetilde{P} \circ i = R \circ A \circ i$$

where i denotes the natural embedding of X into G. This finishes the proof. \Box

Remark 16. There are subspaces of $L_p[0,1]$ $(1 \le p < 2)$ without l.u.st. [12, page 364], so the last result does not follow from Corollary 14.

In the following theorem, $(e_n)_{n=1}^{\infty}$ denotes the unit vector basis of ℓ_1 (or ℓ_2).

Theorem 17. Let X be a Banach space containing a copy of ℓ_1 . Then for every index $m \geq 2$, there exists a polynomial $P \in \mathcal{P}(^mX, \ell_1)$ that is not left r-factorable for any choice of $1 < r \leq \infty$.

Proof. Since X contains a copy of ℓ_1 , there exists a surjective 2-summing operator $q \in \mathcal{L}(X, \ell_2)$ [12, Corollary 4.16]. Let (x_n) be a bounded sequence in X such that $q(x_n) = e_n$ for all $n \in \mathbb{N}$. Let $Q \in \mathcal{P}(^m\ell_2, \ell_1)$ be the polynomial defined by

$$Q(x) := (x_k^m)_{k=1}^{\infty} \quad \text{for } x = (x_k)_{k=1}^{\infty} \in \ell_2.$$

Consider the polynomial $P := Q \circ q \in \mathcal{P}({}^mX, \ell_1)$. If P were left r-factorable for some $1 < r \le \infty$, then there would exist a positive measure space (Ω, Σ, μ) , a polynomial $R \in \mathcal{P}({}^mX, L_r(\mu))$ and an operator $T \in \mathcal{L}(L_r(\mu), \ell_\infty^*)$ such that $k_{\ell_1} \circ P = T \circ R$. Let $H \in \mathcal{L}(\ell_\infty^*, \ell_1)$ be a projection such that $H \circ k_{\ell_1}$ is the identity map on ℓ_1 . Then $P = H \circ k_{\ell_1} \circ P = H \circ T \circ R$. If $1 < r < \infty$, $H \circ T \in \mathcal{L}(L_r(\mu), \ell_1)$ is a compact operator. The same happens if $r = \infty$ since,

in this case, $H \circ T$ is 2-summing (and hence weakly compact) with values in ℓ_1 [12, Theorem 11.14]. In both cases, P would be a compact polynomial, in contradiction with the fact that $P(x_n) = e_n$ for all $n \in \mathbb{N}$.

Remark 18. (a) The polynomial constructed in Theorem 17 is right 2-factorable, and so right r-factorable, for $1 < r < \infty$, by [12, Corollary 9.2].

- (b) Recall that X is said to be a GL-space if every absolutely summing operator from X into ℓ_2 is 1-factorable. Suppose that at least one of the spaces X and Y is a GL-space, and that X^* and Y have cotype 2. Then $\mathcal{L}(X,Y) = \Gamma_2(X,Y)$ [12, Theorem 17.12]. The same conditions on the spaces X and Y do not imply the equality $\mathcal{P}(^mX,Y) = \mathcal{P}_2^{m,\text{left}}(X,Y)$. Indeed, it is enough to apply Theorem 17 when $X = \ell_\infty$ and $Y = \ell_1$.
- (c) In [10, Proposition 5.8] there are examples of nuclear m-homogeneous polynomials from ℓ_{∞} into ℓ_1 that are not right 2-factorable, so we have $\mathcal{P}(^m\ell_{\infty}, \ell_1) \neq \mathcal{P}_2^{m, \text{right}}(\ell_{\infty}, \ell_1)$ in spite of the equality $\mathcal{L}(\ell_{\infty}, \ell_1) = \Gamma_2(\ell_{\infty}, \ell_1)$ [12, Theorem 17.12].

References

- R. Alencar, On reflexivity and basis for P(^mE), Proc. Roy. Irish Acad. Sect. A 85 (1985), no. 2, 131–138.
- R. M. Aron and P. D. Berner, A Hahn-Banach extension theorem for analytic mappings, Bull. Soc. Math. France 106 (1978), no. 1, 3-24.
- [3] F. Blasco, Complementation in spaces of symmetric tensor products and polynomials, Studia Math. 123 (1997), no. 2, 165–173.
- [4] G. Botelho, Ideals of polynomials generated by weakly compact operators, Note Mat. 25 (2005/06), no. 1, 69–102.
- [5] G. Botelho and D. M. Pellegrino, Two new properties of ideals of polynomials and applications, Indag. Math. (N.S.) 16 (2005), no. 2, 157–169.
- [6] D. Carando, Extendible polynomials on Banach spaces, J. Math. Anal. Appl. 233 (1999), no. 1, 359–372.
- [7] R. Cilia, M. D'Anna, and J. M. Gutiérrez, Polynomials on Banach spaces whose duals are isomorphic to $l_1(\Gamma)$, Bull. Austral. Math. Soc. **70** (2004), no. 1, 117–124.
- [8] R. Cilia and J. M. Gutiérrez, Polynomial characterization of Asplund spaces, Bull. Belg. Math. Soc. Simon Stevin 12 (2005), no. 3, 393–400.
- [9] ______, Dominated, diagonal polynomials on l_p spaces, Arch. Math. (Basel) 84 (2005), no. 5, 421–431.
- [10] ______, Ideals of integral and r-factorable polynomials, to appear in Bol. Soc. Mat. Mexicana.
- [11] A. Defant and K. Floret, Tensor Norms and Operator Ideals, North-Holland Mathematics Studies, 176. North-Holland Publishing Co., Amsterdam, 1993.
- [12] J. Diestel, H. Jarchow, and A. Tonge, Absolutely Summing Operators, Cambridge Studies in Advanced Mathematics, 43. Cambridge University Press, Cambridge, 1995.
- [13] J. Diestel and J. J. Uhl, Jr., Vector Measures, Mathematical Surveys, No. 15. American Mathematical Society, Providence, R.I., 1977.
- [14] S. Dineen, Complex Analysis on Infinite-Dimensional Spaces, Springer Monographs in Mathematics. Springer-Verlag London, Ltd., London, 1999.
- [15] K. Floret, Natural norms on symmetric tensor products of normed spaces, Note Mat. 17 (1997), 153–188.

- [16] J. M. Gutiérrez and I. Villanueva, Extensions of multilinear operators and Banach space properties, Proc. Roy. Soc. Edinburgh Sect. A 133 (2003), no. 3, 549–566.
- [17] J. Lindenstrauss and H. P. Rosenthal, The \mathcal{L}_p spaces, Israel J. Math. 7 (1969), 325–349.
- [18] M. C. Matos, Absolutely summing holomorphic mappings, An. Acad. Brasil. Ciênc. 68 (1996), no. 1, 1–13.
- [19] Y. Meléndez and A. Tonge, Polynomials and the Pietsch domination theorem, Math. Proc. R. Ir. Acad. 99A (1999), no. 2, 195–212.
- [20] J. Mujica, Complex Analysis in Banach Spaces, North-Holland Publishing Co., Amsterdam, 1986.
- [21] R. A. Ryan, Applications of topological tensor products to infinite dimensional holomorphy, Ph. D. Thesis, Trinity College, Dublin 1980.
- [22] ______, Introduction to Tensor Products of Banach Spaces, Springer-Verlag London, Ltd., London, 2002.

RAFFAELLA CILIA
DIPARTIMENTO DI MATEMATICA
FACOLTÀ DI SCIENZE
UNIVERSITÀ DI CATANIA
VIALE ANDREA DORIA 6
95125 CATANIA, ITALY
E-mail address: cilia@dmi.unict.it

Joaquín M. Gutiérrez
Departamento de Matemática Aplicada
ETS de Ingenieros Industriales
Universidad Politécnica de Madrid
C. José Gutiérrez Abascal 2
28006 Madrid, Spain
E-mail address: jgutierrez@etsii.upm.es