J. Korean Math. Soc. **46** (2009), No. 6, pp. 1309–1318 DOI 10.4134/JKMS.2009.46.6.1309

ROMAN k-DOMINATION IN GRAPHS

KARSTEN KÄMMERLING AND LUTZ VOLKMANN

ABSTRACT. Let k be a positive integer, and let G be a simple graph with vertex set V(G). A Roman k-dominating function on G is a function $f: V(G) \to \{0, 1, 2\}$ such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v_1, v_2, \ldots, v_k with $f(v_i) = 2$ for $i = 1, 2, \ldots, k$. The weight of a Roman k-dominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number $\gamma_{kR}(G)$ of G. Note that the Roman 1-domination number $\gamma_{1R}(G)$ is the usual Roman domination number $\gamma_R(G)$. In this paper, we investigate the properties of the Roman k-domination number. Some of our results extend these one given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2] in 2004 for the Roman domination number.

1. Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V(G)and edge set E(G). The number of vertices |V(G)| of a graph G is called the *order* of G and is denoted by n = n(G).

The open neighborhood $N(v) = N_G(v)$ of a vertex v consists of the vertices adjacent to v and $d(v) = d_G(v) = |N(v)|$ is the degree of v. The closed neighborhood of a vertex v is defined by $N[v] = N_G[v] = N(v) \cup \{v\}$. The maximum degree of a graph G is denoted by $\Delta(G) = \Delta$. For a subset $S \subseteq V(G)$, we define $N(S) = N_G(S) = \bigcup_{v \in S} N(v), N[S] = N_G[S] = N(S) \cup S$, and G[S] is the subgraph induced by S. The complement of a graph G is denoted by \overline{G} . If $\omega(G)$ is the number of components of G and m(G) = |E(G)|, then

$$c(G) = m(G) - n(G) + \omega(G)$$

is the well-known cyclomatic number of G. A graph is a cactus graph if all its cycles are edge-disjoint.

We write K_n for the complete graph of order n, and $K_{p,q}$ for the complete bipartite graph with bipartition X, Y such that |X| = p and |Y| = q.

O2009 The Korean Mathematical Society

1309

Received April 29, 2008; Revised August 25, 2008.

²⁰⁰⁰ Mathematics Subject Classification. 05C69.

 $Key\ words\ and\ phrases.$ domination, Romank -domination, Roman domination, k -domination.

Let k be a positive integer. A subset $D \subseteq V(G)$ is a k-dominating set of the graph G, if $|N_G(v) \cap D| \ge k$ for every $v \in V(G) - D$. The k-domination number $\gamma_k(G)$ is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number $\gamma_1(G)$ is the classical domination number $\gamma(G)$. A k-dominating set of minimum cardinality of a graph G is called a $\gamma_k(G)$ -set.

In this paper, we study an extension of the Roman dominating function which is suggested by an article in Scientific American by Ian Steward, entitled "Defend the Roman Empire!" [9]. According to [2], Constantine the Great (Emperor of Rome) issued a decree in the 4th century A.D. for the defense of his cities. He decreed that any city without a legion stationed to secure it must neighbor another city having two stationed legions. If the first were attacked, then the second could deploy a legion to protect it without becoming vulnerable itself. The objective, of course, is to minimize the total number of legions needed. However, the Roman Empire has had a lot of enemies, and if a number of k enemies attack k cities without a legion, then these cities are secured in the above sense if they are neighbored to at least k cities having two stationed legions. This leads in a natural way to the following generalization of the Roman dominating function.

A Roman k-dominating function on G is a function $f: V(G) \to \{0, 1, 2\}$ such that every vertex u for which f(u) = 0 is adjacent to at least k vertices v_1, v_2, \ldots, v_k with $f(v_i) = 2$ for $i = 1, 2, \ldots, k$. The weight of a Roman kdominating function is the value $f(V(G)) = \sum_{u \in V(G)} f(u)$. The minimum weight of a Roman k-dominating function on a graph G is called the Roman kdomination number $\gamma_{kR}(G)$ of G. Note that the Roman 1-domination number $\gamma_{1R}(G)$ is the usual Roman domination number $\gamma_R(G)$. A Roman k-dominating function of minimum weight is called a γ_{kR} -function. If $f: V(G) \to \{0, 1, 2\}$ is a Roman k-dominating function, then let (V_0, V_1, V_2) be the ordered partition of V(G) induced by f, where $V_i = \{v \in V(G) | f(v) = i\}$ for i = 0, 1, 2. Note that there is a 1-1 correspondence between the functions $f: V(G) \to \{0, 1, 2\}$ and the ordered partitions (V_0, V_1, V_2) of V(G). Thus we will write $f = (V_0, V_1, V_2)$.

In [4], [5], Fink and Jacobson introduced the concept of k-domination, and the definition of the Roman dominating function was given implicitly by Steward [9] and ReVelle and Rosing [8]. For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi and Slater [6], [7].

2. Main results

Our first observation is an extension of a corresponding inequality chain in [2] for k = 1.

Proposition 2.1. For any graph G

$$\gamma_k(G) \le \gamma_{kR}(G) \le 2\gamma_k(G).$$

1310

Proof. If $f = (V_0, V_1, V_2)$ is a γ_{kR} -function of G, then $V_1 \cup V_2$ is a k-dominating set of G and thus $\gamma_k(G) \leq |V_1| + |V_2| \leq |V_1| + 2|V_2| = \gamma_{kR}(G)$.

If D is a γ_k -set of G, then $f = (V(G) - D, \emptyset, D)$ is a Roman k-dominating set of G and thus $\gamma_{kR}(G) \leq 2|D| = 2\gamma_k(G)$.

Following Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2], we will say that a graph G is a k-Roman graph if $\gamma_{kR}(G) = 2\gamma_k(G)$.

Proposition 2.2. A graph G is a k-Roman graph if and only if it has a γ_{kR} -function $f = (V_0, V_1, V_2)$ with $V_1 = \emptyset$.

Proof. Let G be a k-Roman graph, and let D be a γ_k -set of G. Then $f = (V(G) - D, \emptyset, D)$ is a Roman k-dominating function of G such that

$$f(V(G)) = 2|D| = 2\gamma_k(D) = \gamma_{kR}(G),$$

and therefore f is a γ_{kR} -function with $V_1 = \emptyset$.

Conversely, let $f = (V_0, V_1, V_2)$ be a γ_{kR} -function with $V_1 = \emptyset$ and thus $\gamma_{kR}(G) = 2|V_2|$. Then V_2 is also a k-dominating set of G, and hence it follows that $2\gamma_k(G) \leq 2|V_2| = \gamma_{kR}(G)$. Applying Proposition 2.1, we obtain the identity $\gamma_{kR}(G) = 2\gamma_k(G)$, i.e., G is a k-Roman graph.

Corollary 2.3 ([2]). A graph G is a 1-Roman graph if and only if it has a γ_R -function $f = (V_0, V_1, V_2)$ with $V_1 = \emptyset$.

Proposition 2.4. If G is a graph of order n, then the following conditions are equivalent:

- (i) $\gamma_k(G) = \gamma_{kR}(G),$ (ii) $\gamma_k(G) = n,$ (iii) $\Delta(G) \le k - 1.$
- (iii) $\Delta(G) \leq \kappa 1$

Proof. Assume that $\gamma_k(G) = \gamma_{kR}(G)$. If $f = (V_0, V_1, V_2)$ is a γ_{kR} -function of G, then the assumption implies that we have equality in $\gamma_k(G) \leq |V_1| + |V_2| \leq |V_1| + 2|V_2| = \gamma_{kR}(G)$. This implies that $|V_2| = 0$ and hence we deduce that $|V_0| = 0$. Therefore $\gamma_k(G) = \gamma_{kR}(G) = |V_1| = |V(G)| = n$.

Clearly, if $\gamma_k(G) = n$, then $\Delta(G) \leq k - 1$.

If $\Delta(G) \leq k - 1$, then $\gamma_k(G) = n$ is immediate and thus Proposition 2.1 shows that $\gamma_k(G) = \gamma_{kR}(G)$.

Corollary 2.5 ([2]). Let G be a graph of order n. Then $\gamma(G) = \gamma_R(G)$ if and only if $G = \overline{K_n}$.

Proposition 2.6. If G is a graph of order n, then

$$\gamma_{kR}(G) \ge \min\{n, \gamma_k(G) + k\}.$$

Proof. If $\gamma_{kR}(G) = n$, then we are done. Assume now that $\gamma_{kR}(G) < n$, and suppose on the contrary that $\gamma_{kR}(G) \leq \gamma_k(G) + k - 1$. If $f = (V_0, V_1, V_2)$ is a

 γ_{kR} -function of G, then $V_1 \cup V_2$ is a k-dominating set of G and thus

$$\begin{aligned} \gamma_k(G) &\leq |V_1| + |V_2| \leq |V_1| + 2|V_2| \\ &= \gamma_{kR}(G) \leq \gamma_k(G) + k - 1 \\ &\leq |V_1| + |V_2| + k - 1. \end{aligned}$$

This implies $|V_2| \leq k - 1$ and hence we conclude that $|V_0| = 0$. This leads to $|V_2| = 0$ and therefore we arrive at the contradiction $\gamma_{kR}(G) = |V_1| = n$. \Box

Proposition 2.7. Let G be a graph of order n.

- (i) If $n \leq 2k$, then $\gamma_{kR}(G) = n$.
- (ii) If $n \ge 2k+1$, then $\gamma_{kR}(G) \ge 2k$.
- (iii) If $n \ge 2k+1$ and $\gamma_k(G) = k$, then $\gamma_{kR}(G) = \gamma_k(G) + k = 2k$.

Proof. (i) Assume that $n \leq 2k$, and suppose on the contrary that $\gamma_{kR}(G) < n$. This implies $|V_0| \geq 1$ and thus $|V_2| \geq k$ for every γ_{kR} -function $f = (V_0, V_1, V_2)$. However, this leads to the contradiction $\gamma_{kR}(G) = |V_1| + 2|V_2| \geq 2|V_2| \geq 2k \geq n$.

(ii) Assume that $n \ge 2k + 1$. If $\gamma_{kR}(G) = n$, then we are done. If $\gamma_{kR}(G) < n$, then $|V_0| \ge 1$ and thus $|V_2| \ge k$ for every γ_{kR} -function $f = (V_0, V_1, V_2)$. Therefore we obtain the desired bound $\gamma_{kR}(G) = |V_1| + 2|V_2| \ge 2|V_2| \ge 2k$.

(iii) Assume that $n \geq 2k + 1$ and $\gamma_k(G) = k$. If D is a γ_k -set of G, then $(V(G) - D, \emptyset, D)$ is a Roman k-dominating set of G and thus $\gamma_{kR}(G) \leq 2|D| = 2k$. Using (ii), we arrive at the desired identity $\gamma_{kR}(G) = 2k = \gamma_k(G) + k$. \Box

Theorem 2.8. If G is a graph of order n, then

(1)
$$\gamma_{kR}(G) + \gamma_{kR}(\overline{G}) \ge \min\{2n, 4k+1\}.$$

Furthermore, equality holds in (1) if and only if $n \le 2k$ or $k \ge 2$ and n = 2k+1 or k = 1 and G or \overline{G} has a vertex of degree n-1 and its complement has a vertex of degree n-2.

Proof. Assume that $n \leq 2k$. Then Proposition 2.7 (i) shows that

$$\gamma_{kR}(G) + \gamma_{kR}(G) = 2n = \min\{2n, 4k+1\}.$$

Assume now that $n \geq 2k+1$. In addition, assume, without loss of generality, that $\gamma_{kR}(\overline{G}) \geq \gamma_{kR}(G)$. If $\gamma_{kR}(G) \geq 2k+1$, then we deduce that $\gamma_{kR}(G) + \gamma_{kR}(\overline{G}) \geq 4k+2$. Therefore (1) is proved, and we notice that equality in (1) is impossible in this case.

In view of Proposition 2.7 (ii), there remains the case that $\gamma_{kR}(G) = 2k < n$. It follows that $|V_0| \ge 1$ and thus $|V_2| = k$ and $|V_1| = 0$ for every γ_{kR} -function $f = (V_0, V_1, V_2)$. Since $|V_2| = k$, every vertex of V_0 is adjacent to every vertex of V_2 in \overline{G} . Consequently, there is no edge between V_0 and V_2 in \overline{G} . Applying Proposition 2.7 again, we see that

(2)

$$\gamma_{kR}(\overline{G}) = \gamma_{kR}(\overline{G}[V_2]) + \gamma_{kR}(\overline{G}[V_0])$$

$$\geq k + \min\{n - k, 2k\}$$

$$= \min\{n, 3k\}.$$

Combining this with the assumption $\gamma_{kR}(G) = 2k$, we obtain (1).

Clearly, if k = 1 and G or \overline{G} has a vertex of degree n - 1 and its complement has a vertex of degree n - 2, then $\gamma_{kR}(G) + \gamma_{kR}(\overline{G}) = 4k + 1 = 5$. If $k \ge 2$ and n = 2k + 1, then $\gamma_{kR}(G) = 2k$ and, according to (2), $\gamma_{kR}(G) + \gamma_{kR}(\overline{G}) = 4k + 1$. Conversely, assume that $\gamma_{kR}(G) + \gamma_{kR}(\overline{G}) = 4k + 1$. Combining this with

(2), we arrive at

$$2k+1 = \gamma_{kR}(\overline{G}) = k + \gamma_{kR}(\overline{G}[V_0]) = \min\{n, 3k\}.$$

In the case $k \ge 2$, we conclude that n = 2k + 1. If k = 1, then we have seen above that $|V_2| = 1$, $|V_0| = n - 1$ and there is no edge between V_0 and V_2 in \overline{G} . Thus G has a vertex of degree n - 1 and, because of $\gamma_{kR}(\overline{G}[V_0]) = 2$, \overline{G} has a vertex of degree n - 2.

Corollary 2.9 ([1]). If G is a graph of order $n \ge 3$, then $\gamma_R(G) + \gamma_R(\overline{G}) \ge 5$ with equality if and only if G or \overline{G} has a vertex of degree n - 1 and its complement has a vertex of degree n - 2.

Next we derive some properties of γ_{kR} -functions, which extend these one by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2].

Proposition 2.10. Let $f = (V_0, V_1, V_2)$ be any γ_{kR} -function of a graph G. Then

- (a) The complete bipartite graph $K_{k,k+1}$ is not a subgraph of $G[V_1]$.
- (b) If $w \in V_1$, then $|N_G(w) \cap V_2| \le k 1$.
- (c) If $A = \{u_1, u_2, \dots, u_k\} \subseteq V_0$, then $|V_1 \cap N_G(u_1) \cap N_G(u_2) \cap \dots \cap N_G(u_k)| \le 2k$.
- (d) V_2 is a γ_k -set of the induced subgraph $G[V_0 \cup V_2]$.
- (e) Let $H = G[V_0 \cup V_2]$, and let $v \in V_2$. Then there exists a vertex $u_1 \in N_H(v) \cap V_0$ such that u_1 has exactly k 1 neighbors in $V_2 \{v\}$. In addition, there exists either a second vertex $u_2 \in N_H(v) \cap V_0$ such that u_2 has exactly k 1 neighbors in $V_2 \{v\}$ or v has at most k 1 neighbors in $V_2 \{v\}$.
- (f) Let v ∈ V₂ such that d_{G[V₂]}(v) = k − 1 and v has precisely one neighbor in V₀, say w, with the property that w has exactly k − 1 neighbors in V₂ − {v}. If S₁ ⊆ V₁ is a set such that each vertex of S₁ has precisely k − 1 neighbors in V₂ − {v}, then N_G(w) ∩ S₁ = Ø.
- (g) Let $S_2 \subseteq V_2$ be the set of vertices of degree at least k in $G[V_2]$, and let $C = \{x \in V_0 \mid |N_G(x) \cap V_2| \ge k+1\}$. Then

$$|V_0| \ge \max\left\{|V_2| + \frac{|V_2| + |S_2|}{k} + |C|\right\}.$$

Proof. (a) Suppose on the contrary that $K_{k,k+1}$ is a subgraph of $G[V_1]$, and let $A = \{x_1, x_2, \ldots, x_k\}$ and $B = \{y_1, y_2, \ldots, y_{k+1}\}$ be a bipartition of $K_{k,k+1}$. Then we observe that $f' = (V_0 \cup B, V_1 - (A \cup B), V_2 \cup A)$ is also a Roman

k-dominating function of G with the weight

$$f'(V(G)) = |V_1 - (A \cup B)| + 2|V_2 \cup A|$$

= |V_1| + 2|V_2| + |A| - |B|
= |V_1| + 2|V_2| - 1
= f(V(G)) - 1.

This is a contradiction to the hypothesis that f is a γ_{kR} -function of the graph G and (a) is proved.

(b) Suppose on the contrary that $|N_G(w) \cap V_2| \ge k$. Then $f' = (V_0 \cup \{w\}, V_1 - \{w\}, V_2)$ is also a Roman k-dominating function of G with f'(V(G)) = f(V(G)) - 1, a contradiction.

(c) Suppose on the contrary that $|V_1 \cap N_G(u_1) \cap N_G(u_2) \cap \cdots \cap N_G(u_k)| \ge 2k + 1$. Let $B = \{w_1, w_2, \ldots, w_{2k+1}\} \subseteq V_1 \cap N_G(u_1) \cap N_G(u_2) \cap \cdots \cap N_G(u_k)$. Then $f' = ((V_0 - A) \cup B, V_1 - B, V_2 \cup A)$ is also a Roman k-dominating function of G, and we arrive at the contradiction

$$f'(V(G)) = |V_1 - B| + 2|V_2 \cup A|$$

= |V_1| + 2|V_2| + 2|A| - |B|
= |V_1| + 2|V_2| - 1
= f(V(G)) - 1.

(d) is immediate by the definition of the γ_{kR} -function of a graph G.

(e) First we note that v has a neighbor in V_0 . Because otherwise, $f' = (V_0, V_1 \cup \{v\}, V_2 - \{v\})$ is also a Roman k-dominating function of G, and we arrive at the contradiction f'(V(G)) = f(V(G)) - 1.

Let $\{u_1, u_2, \ldots, u_s\} = N_H(v) \cap V_0$. If u_i has at least k neighbors in $V_2 - \{v\}$ for each $i = 1, 2, \ldots, s$, then $f' = (V_0, V_1 \cup \{v\}, V_2 - \{v\})$ is also a Roman k-dominating function of G, and we arrive at the contradiction f'(V(G)) = f(V(G)) - 1. Hence there exists at least one vertex, say u_1 , in $N_H(v) \cap V_0$ such that u_1 has exactly k - 1 neighbors in $V_2 - \{v\}$.

If there is a second vertex $w \in N_H(v) \cap V_0$ such that w has exactly k-1 neighbors in $V_2 - \{v\}$, then we are done. If not, then we suppose on the contrary that v has at least k neighbors in $V_2 - \{v\}$. Since each vertex in $\{u_2, u_3, \ldots, u_s, v\}$ has at least k neighbors in $V_2 - \{v\}$, we conclude that $f' = ((V_0 - \{u_1\}) \cup \{v\}, V_1 \cup \{u_1\}, V_2 - \{v\})$ is also a Roman k-dominating function of G. However, this leads to the contradiction f'(V(G)) = f(V(G)) - 1.

(f) Suppose on the contrary that $N_G(w) \cap S_1 \neq \emptyset$, and let $u \in N_G(w) \cap S_1$. Then $f' = ((V_0 - \{w\}) \cup \{u, v\}, V_1 - \{u\}, (V_2 - \{v\}) \cup \{w\})$ is also a Roman k-dominating function of G, and we arrive at the contradiction f'(V(G)) = f(V(G)) - 1.

(g) If we suppose that $|V_2| > |V_0|$, then we arrive at the contradiction $\gamma_{kR}(G) = |V_1| + 2|V_2| = |V_1| + |V_2| + |V_2| > |V_0| + |V_1| + |V_2| = n$. This implies that $|V_0| \ge |V_2|$.

In view of (e), every vertex $v \in V_2$ has a neighbor $u \in V_0$ such that u has exactly k - 1 neighbors in $V_2 - \{v\}$, and every vertex $v \in S_2$ even has at least two neighbors in V_0 with this property. If $V'_0 \subseteq V_0$ consists of all these neighbors, then it follows that $k|V'_0| \ge 2|S_2| + (|V_2| - |S_2|) = |V_2| + |S_2|$. Since all the vertices of V'_0 have precisely k neighbors in V_2 they are different from these one in $C \subseteq V_0$, and thus we deduce that $|V_0| \ge (|V_2| + |S_2|)/k + |C|$. Combining this with $|V_0| \ge |V_2|$, we obtain the desired bound.

Corollary 2.11 ([2]). Let $f = (V_0, V_1, V_2)$ be any γ_R -function of a graph G. Then

- (a) The induced subgraph $G[V_1]$ has maximum degree 1.
- (b) No edge of G joins V_1 and V_2 .
- (c) Each vertex of V_0 is adjacent to at most two vertices of V_1 .
- (d) V_2 is a γ -set of the induced subgraph $G[V_0 \cup V_2]$.
- (e) Let $H = G[V_0 \cup V_2]$. Then each vertex $v \in V_2$ has at least two private neighbors relative to V_2 in the graph H.
- (f) If v is isolated in $G[V_2]$ and has precisely one neighbor in V_0 , say w, with the property that w has no neighbor in $V_2 - \{v\}$, then $N_G(w) \cap V_1 = \emptyset$.
- (g) Let $S_2 \subseteq V_2$ be the set of non-isolated vertices in $G[V_2]$, and let $C = \{x \in V_0 \mid |N_G(x) \cap V_2| \ge 2\}$. Then $|V_0| \ge |V_2| + |S_2| + |C|$.

The special case k = 1 of the following lower bound on the Roman k-domination number can be find in the article [3].

Theorem 2.12. If G is a graph of order n and maximum degree $\Delta \geq k$, then

$$\gamma_{kR}(G) \ge \frac{2n}{\frac{\Delta}{k} + 1}.$$

Proof. Let $f = (V_0, V_1, V_2)$ be a γ_{kR} -function of G. Since each vertex $v \in V_0$ is adjacent to at least k vertices of V_2 , we deduce that

$$k|V_0| \le \Delta |V_2|.$$

This inequality and the hypothesis $\Delta \geq k$ imply the desired bound as follows:

$$\left(\frac{\Delta}{k}+1\right)\gamma_{kR}(G) = \left(\frac{\Delta}{k}+1\right)\left(|V_1|+2|V_2|\right)$$
$$= \left(\frac{\Delta}{k}+1\right)|V_1|+2\left(\frac{\Delta}{k}+1\right)|V_2|$$
$$\geq \left(\frac{\Delta}{k}+1\right)|V_1|+2|V_2|+2|V_0|$$
$$\geq 2|V_1|+2|V_2|+2|V_0|$$
$$= 2n.$$

Corollary 2.13. If G is a graph of order n and maximum degree $\Delta = k$, then $\gamma_{kR}(G) = n$.

Next we derive a slight extension of Corollary 2.13 for $k \geq 2$.

Proposition 2.14. Let G be a graph of order n. If $\gamma_{kR}(G) < n$, then $\Delta(G) \ge k+2$ or there exist at least k vertices u_1, u_2, \ldots, u_k such that $d_G(u_i) = k+1$ for $i = 1, 2, \ldots, k$.

Proof. Let $f = (V_0, V_1, V_2)$ be a γ_{kR} -function of G. The hypothesis $|V_0| + |V_1| + |V_2| = n > \gamma_{kR}(G) = |V_1| + 2|V_2|$ implies $|V_0| \ge |V_2| + 1$. Since each vertex $w \in V_0$ is adjacent to at least k vertices of V_2 , we deduce that

$$\sum_{u \in V_2} d_G(u) \ge k|V_0| \ge k(|V_2| + 1)$$

If we suppose on the contrary that $\Delta(G) \leq k+1$ and there are at most k-1 vertices of degree at most k+1, then we arrive at the contradiction

$$k|V_2| + k - 1 \ge \sum_{u \in V_2} d_G(u) \ge k(|V_2| + 1) = k|V_2| + k.$$

Now we present a characterization of the graphs G with $\gamma_{kR}(G) < n(G)$.

Theorem 2.15. Let G be a graph of order n. Then $\gamma_{kR}(G) < n$ if and only if G contains a bipartite subgraph H with bipartition X, Y such that $|X| > |Y| \ge k$ and $d_H(v) \ge k$ for each $v \in X$.

Proof. Assume first that G contains a bipartite subgraph H with the bipartition X, Y such that $|X| > |Y| \ge k$ and $d_H(v) \ge k$ for each $v \in X$. Then $f = (X, V(G) - (X \cup Y), Y)$ is a Roman k-domination function of weight

 $f(V(G)) = |V(G) - (X \cup Y)| + 2|Y| = n - |X| + |Y| < n.$

Conversely, assume that $\gamma_{kR}(G) < n$, and let (V_0, V_1, V_2) be a γ_{kR} -function. It follows that $|V_0| + |V_1| + |V_2| = n > \gamma_{kR}(G) = |V_1| + 2|V_2|$ and thus $|V_0| > |V_2|$. Since $|V_0| > 0$, we deduce that $|V_2| \ge k$. Now define H as the bipartite graph consisting of the bipartition V_0 and V_2 together with all edges of G connecting a vertex of V_0 with a vertex of V_2 . As $d_H(v) \ge k$ for each vertex $v \in V_0$, the subgraph H has the desired properties, and the proof is complete. \Box

Finally, we give two applications of Theorem 2.15. It is well-known that a graph G is a forest if and only if its cyclomatic number c(G) = 0, and that G is a unicyclic graph if and only if c(G) = 1 (see for example Volkmann [10], pp. 29–31).

Theorem 2.16. Let G be a graph of order n. If $k \ge 2$, then

(3)
$$\gamma_{kR}(G) \ge \min\{n, n+1-c(G)\}.$$

Proof. Clearly, it is enough to show that inequality (3) is valid for k = 2. For k = 2 we proceed by induction on c(G).

First assume that $c(G) \leq 1$. Suppose on the contrary that $\gamma_{2R}(G) < n$. According to Theorem 2.15, G contains a bipartite subgraph H with bipartition X, Y such that $|X| > |Y| \geq 2$ and $d_H(v) \geq 2$ for each $v \in X$. It follows that

1316

 $c(H) = m(H) - n(H) + \omega(H) \ge 2|X| - |X| - |Y| + 1 \ge 2$. Hence H and so G contains at least two cycles, a contradiction to the hypothesis that $c(G) \le 1$.

Assume next that $c(G) \ge 2$. Then G contains a cycle C. Let e = uv be an edge of the cycle C, and define the subgraph H = G - e. Then $c(H) = c(G) - 1 \ge 1$, and therefore we deduce from the induction hypothesis that

(4)
$$\gamma_{2R}(H) \ge n + 1 - c(H).$$

Now let $f = (V_0, V_1, V_2)$ be any γ_{2R} -function of G. If f(u) = 0 and f(v) = 2, then $f' = (V_0 - \{u\}, V_1 \cup \{u\}, V_2)$ is a Roman 2-dominating function of H. Therefore (4) implies the desired bound (3) as follows:

$$\begin{aligned} \gamma_{2R}(G) &= |V_1| + 2|V_2| = |V_1 \cup \{u\}| + 2|V_2| - 1 \\ &\geq \gamma_{2R}(H) - 1 \ge n - c(H) = n + 1 - c(G) \end{aligned}$$

Since all the remaining cases are similar to the case f(u) = 0 and f(v) = 2, the proof of Theorem 2.16 is complete.

Corollary 2.17. If G is a graph of order n with at most one cycle, then $\gamma_{kR}(G) = n$ when $k \geq 2$.

The graph G of order 7 consisting of two cycles $x_1x_2x_3x_4x_1$ and $y_1y_2y_3y_4y_1$ with $x_1 = y_1$ and the Roman 2-dominating function f such that $f(x_1) = f(x_3) = f(y_3) = 2$ and $f(x_2) = f(x_4) = f(y_2) = f(y_4) = 0$ shows that Corollary 2.17 is no longer true if the graph contains more than one cycle.

Applying this example, it is easy to see that the Roman 2-domination number $\gamma_{2R}(G_{i,j}) < ij$ for each $i \times j$ grid $G_{i,j}$ when $i, j \geq 3$. In addition, it is a simple matter to prove that $\gamma_{3R}(G_{i,j}) < ij$ when $i \geq 5$ and $j \geq 9$, and Proposition 2.14 implies that $\gamma_{kR}(G_{i,j}) = ij$ when $k \geq 4$.

For the next result, we use the following lemma, which can be found in [10] on p. 30.

Lemma 2.18. If G is a cactus graph, then $2m(G) \leq 3n(G) - 3$.

Proposition 2.19. If G is a cactus graph of order n, then $\gamma_{kR}(G) = n$ when $k \geq 3$.

Proof. Clearly, it is enough to show that $\gamma_{3R}(G) = n$. Suppose on the contrary that $\gamma_{3R}(G) < n$. According to Theorem 2.15, G contains a bipartite subgraph H with bipartition X, Y such that $|X| > |Y| \ge 3$ and $d_H(v) \ge 3$ for each $v \in X$. It follows that $2m(H) \ge 6|X| > 3|X| + 3|Y| > 3n(H) - 3$. Applying Lemma 2.18, we arrive at the contradiction that H and so G is not a cactus graph. \Box

Let W_n be a wheel of order n. We finally notice that $\gamma_{kR}(W_n) = n$ for $k \ge 3$, $\gamma_R(W_n) = 2$ and $\gamma_{2R}(W_n) = \lceil \frac{2(n-1)}{3} \rceil + 2$ when $n \ge 4$.

References

- E. W. Chambers, B. Kinnersley, N. Prince, and D. B. West, *Extremal problems for Roman domination*, unpublished manuscript, 2007.
- [2] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11–22.
- [3] E. J. Cockayne, P. J. P. Grobler, W. R. Grüdnlingh, J. Munganga, and J. H. van Vuuren, Protection of a graph, Util. Math. 67 (2005), 19–32.
- J. F. Fink and M. S. Jacobson, n-domination in graphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 283–300, Wiley-Intersci. Publ., Wiley, New York, 1985.
- [5] _____, On n-domination, n-dependence and forbidden subgraphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 301–311, Wiley-Intersci. Publ., Wiley, New York, 1985.
- [6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208. Marcel Dekker, Inc., New York, 1998.
- [7] _____, Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, 209. Marcel Dekker, Inc., New York, 1998.
- [8] C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585–594.
- [9] I. Steward, Defend the Roman Empire!, Sci. Amer. 281 (1999), 136–139.
- [10] L. Volkmann, Graphen an allen Ecken und Kanten, RWTH Aachen 2006, XVI, 377 pp. http://www.math2.rwth-aachen.de/~uebung/GT/graphen1.html.

KARSTEN KÄMMERLING LEHRSTUHL II FÜR MATHEMATIK RWTH AACHEN UNIVERSITY 52056 AACHEN, GERMANY

LUTZ VOLKMANN LEHRSTUHL II FÜR MATHEMATIK RWTH AACHEN UNIVERSITY 52056 AACHEN, GERMANY *E-mail address*: volkm@math2.rwth-aachen.de