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ROMAN k-DOMINATION IN GRAPHS

Karsten Kämmerling and Lutz Volkmann

Abstract. Let k be a positive integer, and let G be a simple graph with
vertex set V (G). A Roman k-dominating function on G is a function f :
V (G) → {0, 1, 2} such that every vertex u for which f(u) = 0 is adjacent
to at least k vertices v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k.
The weight of a Roman k-dominating function is the value f(V (G)) =P

u∈V (G) f(u). The minimum weight of a Roman k-dominating function

on a graph G is called the Roman k-domination number γkR(G) of G.
Note that the Roman 1-domination number γ1R(G) is the usual Roman
domination number γR(G). In this paper, we investigate the properties of
the Roman k-domination number. Some of our results extend these one
given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi
[2] in 2004 for the Roman domination number.

1. Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set V (G)
and edge set E(G). The number of vertices |V (G)| of a graph G is called the
order of G and is denoted by n = n(G).

The open neighborhood N(v) = NG(v) of a vertex v consists of the vertices
adjacent to v and d(v) = dG(v) = |N(v)| is the degree of v. The closed neigh-
borhood of a vertex v is defined by N [v] = NG[v] = N(v)∪{v}. The maximum
degree of a graph G is denoted by ∆(G) = ∆. For a subset S ⊆ V (G), we
define N(S) = NG(S) =

⋃
v∈S N(v), N [S] = NG[S] = N(S) ∪ S, and G[S] is

the subgraph induced by S. The complement of a graph G is denoted by G. If
ω(G) is the number of components of G and m(G) = |E(G)|, then

c(G) = m(G)− n(G) + ω(G)

is the well-known cyclomatic number of G. A graph is a cactus graph if all its
cycles are edge-disjoint.

We write Kn for the complete graph of order n, and Kp,q for the complete
bipartite graph with bipartition X, Y such that |X| = p and |Y | = q.
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Let k be a positive integer. A subset D ⊆ V (G) is a k-dominating set of
the graph G, if |NG(v) ∩D| ≥ k for every v ∈ V (G) −D. The k-domination
number γk(G) is the minimum cardinality among the k-dominating sets of G.
Note that the 1-domination number γ1(G) is the classical domination number
γ(G). A k-dominating set of minimum cardinality of a graph G is called a
γk(G)-set.

In this paper, we study an extension of the Roman dominating function
which is suggested by an article in Scientific American by Ian Steward, entitled
“Defend the Roman Empire!” [9]. According to [2], Constantine the Great
(Emperor of Rome) issued a decree in the 4th century A.D. for the defense
of his cities. He decreed that any city without a legion stationed to secure
it must neighbor another city having two stationed legions. If the first were
attacked, then the second could deploy a legion to protect it without becoming
vulnerable itself. The objective, of course, is to minimize the total number of
legions needed. However, the Roman Empire has had a lot of enemies, and if
a number of k enemies attack k cities without a legion, then these cities are
secured in the above sense if they are neighbored to at least k cities having two
stationed legions. This leads in a natural way to the following generalization
of the Roman dominating function.

A Roman k-dominating function on G is a function f : V (G) → {0, 1, 2}
such that every vertex u for which f(u) = 0 is adjacent to at least k vertices
v1, v2, . . . , vk with f(vi) = 2 for i = 1, 2, . . . , k. The weight of a Roman k-
dominating function is the value f(V (G)) =

∑
u∈V (G) f(u). The minimum

weight of a Roman k-dominating function on a graph G is called the Roman k-
domination number γkR(G) of G. Note that the Roman 1-domination number
γ1R(G) is the usual Roman domination number γR(G). A Roman k-dominating
function of minimum weight is called a γkR-function. If f : V (G) → {0, 1, 2} is
a Roman k-dominating function, then let (V0, V1, V2) be the ordered partition of
V (G) induced by f , where Vi = {v ∈ V (G) | f(v) = i} for i = 0, 1, 2. Note that
there is a 1-1 correspondence between the functions f : V (G) → {0, 1, 2} and
the ordered partitions (V0, V1, V2) of V (G). Thus we will write f = (V0, V1, V2).

In [4], [5], Fink and Jacobson introduced the concept of k-domination, and
the definition of the Roman dominating function was given implicitly by Stew-
ard [9] and ReVelle and Rosing [8]. For a comprehensive treatment of domi-
nation in graphs, see the monographs by Haynes, Hedetniemi and Slater [6],
[7].

2. Main results

Our first observation is an extension of a corresponding inequality chain in
[2] for k = 1.

Proposition 2.1. For any graph G

γk(G) ≤ γkR(G) ≤ 2γk(G).
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Proof. If f = (V0, V1, V2) is a γkR-function of G, then V1∪V2 is a k-dominating
set of G and thus γk(G) ≤ |V1|+ |V2| ≤ |V1|+ 2|V2| = γkR(G).

If D is a γk-set of G, then f = (V (G) −D, ∅, D) is a Roman k-dominating
set of G and thus γkR(G) ≤ 2|D| = 2γk(G). �

Following Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi
[2], we will say that a graph G is a k-Roman graph if γkR(G) = 2γk(G).

Proposition 2.2. A graph G is a k-Roman graph if and only if it has a γkR-
function f = (V0, V1, V2) with V1 = ∅.
Proof. Let G be a k-Roman graph, and let D be a γk-set of G. Then f =
(V (G)−D, ∅, D) is a Roman k-dominating function of G such that

f(V (G)) = 2|D| = 2γk(D) = γkR(G),

and therefore f is a γkR-function with V1 = ∅.
Conversely, let f = (V0, V1, V2) be a γkR-function with V1 = ∅ and thus

γkR(G) = 2|V2|. Then V2 is also a k-dominating set of G, and hence it fol-
lows that 2γk(G) ≤ 2|V2| = γkR(G). Applying Proposition 2.1, we obtain the
identity γkR(G) = 2γk(G), i.e., G is a k-Roman graph. �

Corollary 2.3 ([2]). A graph G is a 1-Roman graph if and only if it has a
γR-function f = (V0, V1, V2) with V1 = ∅.
Proposition 2.4. If G is a graph of order n, then the following conditions are
equivalent:

(i) γk(G) = γkR(G),
(ii) γk(G) = n,
(iii) ∆(G) ≤ k − 1.

Proof. Assume that γk(G) = γkR(G). If f = (V0, V1, V2) is a γkR-function of
G, then the assumption implies that we have equality in γk(G) ≤ |V1|+ |V2| ≤
|V1| + 2|V2| = γkR(G). This implies that |V2| = 0 and hence we deduce that
|V0| = 0. Therefore γk(G) = γkR(G) = |V1| = |V (G)| = n.

Clearly, if γk(G) = n, then ∆(G) ≤ k − 1.
If ∆(G) ≤ k − 1, then γk(G) = n is immediate and thus Proposition 2.1

shows that γk(G) = γkR(G). �

Corollary 2.5 ([2]). Let G be a graph of order n. Then γ(G) = γR(G) if and
only if G = Kn.

Proposition 2.6. If G is a graph of order n, then

γkR(G) ≥ min{n, γk(G) + k}.
Proof. If γkR(G) = n, then we are done. Assume now that γkR(G) < n, and
suppose on the contrary that γkR(G) ≤ γk(G) + k − 1. If f = (V0, V1, V2) is a
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γkR-function of G, then V1 ∪ V2 is a k-dominating set of G and thus

γk(G) ≤ |V1|+ |V2| ≤ |V1|+ 2|V2|
= γkR(G) ≤ γk(G) + k − 1
≤ |V1|+ |V2|+ k − 1.

This implies |V2| ≤ k − 1 and hence we conclude that |V0| = 0. This leads to
|V2| = 0 and therefore we arrive at the contradiction γkR(G) = |V1| = n. �
Proposition 2.7. Let G be a graph of order n.

(i) If n ≤ 2k, then γkR(G) = n.
(ii) If n ≥ 2k + 1, then γkR(G) ≥ 2k.
(iii) If n ≥ 2k + 1 and γk(G) = k, then γkR(G) = γk(G) + k = 2k.

Proof. (i) Assume that n ≤ 2k, and suppose on the contrary that γkR(G) < n.
This implies |V0| ≥ 1 and thus |V2| ≥ k for every γkR-function f = (V0, V1, V2).
However, this leads to the contradiction γkR(G) = |V1|+2|V2| ≥ 2|V2| ≥ 2k ≥ n.

(ii) Assume that n ≥ 2k + 1. If γkR(G) = n, then we are done. If γkR(G) <
n, then |V0| ≥ 1 and thus |V2| ≥ k for every γkR-function f = (V0, V1, V2).
Therefore we obtain the desired bound γkR(G) = |V1|+ 2|V2| ≥ 2|V2| ≥ 2k.

(iii) Assume that n ≥ 2k + 1 and γk(G) = k. If D is a γk-set of G, then
(V (G)−D, ∅, D) is a Roman k-dominating set of G and thus γkR(G) ≤ 2|D| =
2k. Using (ii), we arrive at the desired identity γkR(G) = 2k = γk(G) + k. �
Theorem 2.8. If G is a graph of order n, then

(1) γkR(G) + γkR(G) ≥ min{2n, 4k + 1}.
Furthermore, equality holds in (1) if and only if n ≤ 2k or k ≥ 2 and n = 2k+1
or k = 1 and G or G has a vertex of degree n − 1 and its complement has a
vertex of degree n− 2.

Proof. Assume that n ≤ 2k. Then Proposition 2.7 (i) shows that

γkR(G) + γkR(G) = 2n = min{2n, 4k + 1}.
Assume now that n ≥ 2k+1. In addition, assume, without loss of generality,

that γkR(G) ≥ γkR(G). If γkR(G) ≥ 2k + 1, then we deduce that γkR(G) +
γkR(G) ≥ 4k + 2. Therefore (1) is proved, and we notice that equality in (1) is
impossible in this case.

In view of Proposition 2.7 (ii), there remains the case that γkR(G) = 2k < n.
It follows that |V0| ≥ 1 and thus |V2| = k and |V1| = 0 for every γkR-function
f = (V0, V1, V2). Since |V2| = k, every vertex of V0 is adjacent to every vertex
of V2 in G. Consequently, there is no edge between V0 and V2 in G. Applying
Proposition 2.7 again, we see that

(2)

γkR(G) = γkR(G[V2]) + γkR(G[V0])

≥ k + min{n− k, 2k}
= min{n, 3k}.
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Combining this with the assumption γkR(G) = 2k, we obtain (1).
Clearly, if k = 1 and G or G has a vertex of degree n−1 and its complement

has a vertex of degree n− 2, then γkR(G) + γkR(G) = 4k + 1 = 5. If k ≥ 2 and
n = 2k+1, then γkR(G) = 2k and, according to (2), γkR(G)+γkR(G) = 4k+1.

Conversely, assume that γkR(G) + γkR(G) = 4k + 1. Combining this with
(2), we arrive at

2k + 1 = γkR(G) = k + γkR(G[V0]) = min{n, 3k}.
In the case k ≥ 2, we conclude that n = 2k + 1. If k = 1, then we have seen
above that |V2| = 1, |V0| = n− 1 and there is no edge between V0 and V2 in G.
Thus G has a vertex of degree n− 1 and, because of γkR(G[V0]) = 2, G has a
vertex of degree n− 2. �

Corollary 2.9 ([1]). If G is a graph of order n ≥ 3, then γR(G) + γR(G) ≥
5 with equality if and only if G or G has a vertex of degree n − 1 and its
complement has a vertex of degree n− 2.

Next we derive some properties of γkR-functions, which extend these one by
Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2].

Proposition 2.10. Let f = (V0, V1, V2) be any γkR-function of a graph G.
Then

(a) The complete bipartite graph Kk,k+1 is not a subgraph of G[V1].
(b) If w ∈ V1, then |NG(w) ∩ V2| ≤ k − 1.
(c) If A = {u1, u2, . . . , uk} ⊆ V0, then |V1 ∩ NG(u1) ∩ NG(u2) ∩ · · · ∩

NG(uk)| ≤ 2k.
(d) V2 is a γk-set of the induced subgraph G[V0 ∪ V2].
(e) Let H = G[V0 ∪ V2], and let v ∈ V2. Then there exists a vertex u1 ∈

NH(v) ∩ V0 such that u1 has exactly k − 1 neighbors in V2 − {v}. In
addition, there exists either a second vertex u2 ∈ NH(v)∩ V0 such that
u2 has exactly k − 1 neighbors in V2 − {v} or v has at most k − 1
neighbors in V2 − {v}.

(f) Let v ∈ V2 such that dG[V2](v) = k− 1 and v has precisely one neighbor
in V0, say w, with the property that w has exactly k − 1 neighbors in
V2 − {v}. If S1 ⊆ V1 is a set such that each vertex of S1 has precisely
k − 1 neighbors in V2 − {v}, then NG(w) ∩ S1 = ∅.

(g) Let S2 ⊆ V2 be the set of vertices of degree at least k in G[V2], and let
C = {x ∈ V0 | |NG(x) ∩ V2| ≥ k + 1}. Then

|V0| ≥ max
{
|V2|+ |V2|+ |S2|

k
+ |C|

}
.

Proof. (a) Suppose on the contrary that Kk,k+1 is a subgraph of G[V1], and
let A = {x1, x2, . . . , xk} and B = {y1, y2, . . . , yk+1} be a bipartition of Kk,k+1.
Then we observe that f ′ = (V0 ∪ B, V1 − (A ∪ B), V2 ∪ A) is also a Roman
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k-dominating function of G with the weight

f ′(V (G)) = |V1 − (A ∪B)|+ 2|V2 ∪A|
= |V1|+ 2|V2|+ |A| − |B|
= |V1|+ 2|V2| − 1
= f(V (G))− 1.

This is a contradiction to the hypothesis that f is a γkR-function of the graph
G and (a) is proved.

(b) Suppose on the contrary that |NG(w) ∩ V2| ≥ k. Then f ′ = (V0 ∪
{w}, V1−{w}, V2) is also a Roman k-dominating function of G with f ′(V (G)) =
f(V (G))− 1, a contradiction.

(c) Suppose on the contrary that |V1 ∩NG(u1) ∩NG(u2) ∩ · · · ∩NG(uk)| ≥
2k + 1. Let B = {w1, w2, . . . , w2k+1} ⊆ V1 ∩NG(u1) ∩NG(u2) ∩ · · · ∩NG(uk).
Then f ′ = ((V0−A)∪B, V1−B, V2∪A) is also a Roman k-dominating function
of G, and we arrive at the contradiction

f ′(V (G)) = |V1 −B|+ 2|V2 ∪A|
= |V1|+ 2|V2|+ 2|A| − |B|
= |V1|+ 2|V2| − 1
= f(V (G))− 1.

(d) is immediate by the definition of the γkR-function of a graph G.
(e) First we note that v has a neighbor in V0. Because otherwise, f ′ =

(V0, V1 ∪ {v}, V2 − {v}) is also a Roman k-dominating function of G, and we
arrive at the contradiction f ′(V (G)) = f(V (G))− 1.

Let {u1, u2, . . . , us} = NH(v)∩V0. If ui has at least k neighbors in V2−{v}
for each i = 1, 2, . . . , s, then f ′ = (V0, V1 ∪ {v}, V2 − {v}) is also a Roman
k-dominating function of G, and we arrive at the contradiction f ′(V (G)) =
f(V (G))−1. Hence there exists at least one vertex, say u1, in NH(v)∩V0 such
that u1 has exactly k − 1 neighbors in V2 − {v}.

If there is a second vertex w ∈ NH(v) ∩ V0 such that w has exactly k − 1
neighbors in V2 − {v}, then we are done. If not, then we suppose on the
contrary that v has at least k neighbors in V2 − {v}. Since each vertex in
{u2, u3, . . . , us, v} has at least k neighbors in V2 − {v}, we conclude that f ′ =
((V0−{u1})∪{v}, V1 ∪{u1}, V2−{v}) is also a Roman k-dominating function
of G. However, this leads to the contradiction f ′(V (G)) = f(V (G))− 1.

(f) Suppose on the contrary that NG(w) ∩ S1 6= ∅, and let u ∈ NG(w) ∩ S1.
Then f ′ = ((V0 − {w}) ∪ {u, v}, V1 − {u}, (V2 − {v}) ∪ {w}) is also a Roman
k-dominating function of G, and we arrive at the contradiction f ′(V (G)) =
f(V (G))− 1.

(g) If we suppose that |V2| > |V0|, then we arrive at the contradiction
γkR(G) = |V1| + 2|V2| = |V1| + |V2| + |V2| > |V0| + |V1| + |V2| = n. This
implies that |V0| ≥ |V2|.
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In view of (e), every vertex v ∈ V2 has a neighbor u ∈ V0 such that u has
exactly k − 1 neighbors in V2 − {v}, and every vertex v ∈ S2 even has at
least two neighbors in V0 with this property. If V ′

0 ⊆ V0 consists of all these
neighbors, then it follows that k|V ′

0 | ≥ 2|S2|+ (|V2| − |S2|) = |V2|+ |S2|. Since
all the vertices of V ′

0 have precisely k neighbors in V2 they are different from
these one in C ⊆ V0, and thus we deduce that |V0| ≥ (|V2| + |S2|)/k + |C|.
Combining this with |V0| ≥ |V2|, we obtain the desired bound. �

Corollary 2.11 ([2]). Let f = (V0, V1, V2) be any γR-function of a graph G.
Then

(a) The induced subgraph G[V1] has maximum degree 1.
(b) No edge of G joins V1 and V2.
(c) Each vertex of V0 is adjacent to at most two vertices of V1.
(d) V2 is a γ-set of the induced subgraph G[V0 ∪ V2].
(e) Let H = G[V0 ∪ V2]. Then each vertex v ∈ V2 has at least two private

neighbors relative to V2 in the graph H.
(f) If v is isolated in G[V2] and has precisely one neighbor in V0, say w, with

the property that w has no neighbor in V2−{v}, then NG(w)∩V1 = ∅.
(g) Let S2 ⊆ V2 be the set of non-isolated vertices in G[V2], and let C =

{x ∈ V0 | |NG(x) ∩ V2| ≥ 2}. Then |V0| ≥ |V2|+ |S2|+ |C|.
The special case k = 1 of the following lower bound on the Roman k-

domination number can be find in the article [3].

Theorem 2.12. If G is a graph of order n and maximum degree ∆ ≥ k, then

γkR(G) ≥ 2n
∆
k + 1

.

Proof. Let f = (V0, V1, V2) be a γkR-function of G. Since each vertex v ∈ V0 is
adjacent to at least k vertices of V2, we deduce that

k|V0| ≤ ∆|V2|.
This inequality and the hypothesis ∆ ≥ k imply the desired bound as follows:(

∆
k

+ 1
)

γkR(G) =
(

∆
k

+ 1
)

(|V1|+ 2|V2|)

=
(

∆
k

+ 1
)
|V1|+ 2

(
∆
k

+ 1
)
|V2|

≥
(

∆
k

+ 1
)
|V1|+ 2|V2|+ 2|V0|

≥ 2|V1|+ 2|V2|+ 2|V0|
= 2n. �

Corollary 2.13. If G is a graph of order n and maximum degree ∆ = k, then
γkR(G) = n.
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Next we derive a slight extension of Corollary 2.13 for k ≥ 2.

Proposition 2.14. Let G be a graph of order n. If γkR(G) < n, then ∆(G) ≥
k + 2 or there exist at least k vertices u1, u2, . . . , uk such that dG(ui) = k + 1
for i = 1, 2, . . . , k.

Proof. Let f = (V0, V1, V2) be a γkR-function of G. The hypothesis |V0|+ |V1|+
|V2| = n > γkR(G) = |V1| + 2|V2| implies |V0| ≥ |V2| + 1. Since each vertex
w ∈ V0 is adjacent to at least k vertices of V2, we deduce that∑

u∈V2

dG(u) ≥ k|V0| ≥ k(|V2|+ 1).

If we suppose on the contrary that ∆(G) ≤ k + 1 and there are at most k − 1
vertices of degree at most k + 1, then we arrive at the contradiction

k|V2|+ k − 1 ≥
∑

u∈V2

dG(u) ≥ k(|V2|+ 1) = k|V2|+ k.
�

Now we present a characterization of the graphs G with γkR(G) < n(G).

Theorem 2.15. Let G be a graph of order n. Then γkR(G) < n if and only if
G contains a bipartite subgraph H with bipartition X, Y such that |X| > |Y | ≥ k
and dH(v) ≥ k for each v ∈ X.

Proof. Assume first that G contains a bipartite subgraph H with the bipartition
X, Y such that |X| > |Y | ≥ k and dH(v) ≥ k for each v ∈ X. Then f =
(X, V (G)− (X ∪ Y ), Y ) is a Roman k-domination function of weight

f(V (G)) = |V (G)− (X ∪ Y )|+ 2|Y | = n− |X|+ |Y | < n.

Conversely, assume that γkR(G) < n, and let (V0, V1, V2) be a γkR-function.
It follows that |V0|+|V1|+|V2| = n > γkR(G) = |V1|+2|V2| and thus |V0| > |V2|.
Since |V0| > 0, we deduce that |V2| ≥ k. Now define H as the bipartite graph
consisting of the bipartition V0 and V2 together with all edges of G connecting
a vertex of V0 with a vertex of V2. As dH(v) ≥ k for each vertex v ∈ V0, the
subgraph H has the desired properties, and the proof is complete. �

Finally, we give two applications of Theorem 2.15. It is well-known that a
graph G is a forest if and only if its cyclomatic number c(G) = 0, and that G
is a unicyclic graph if and only if c(G) = 1 (see for example Volkmann [10], pp.
29–31).

Theorem 2.16. Let G be a graph of order n. If k ≥ 2, then

(3) γkR(G) ≥ min{n, n + 1− c(G)}.
Proof. Clearly, it is enough to show that inequality (3) is valid for k = 2. For
k = 2 we proceed by induction on c(G).

First assume that c(G) ≤ 1. Suppose on the contrary that γ2R(G) < n.
According to Theorem 2.15, G contains a bipartite subgraph H with bipartition
X, Y such that |X| > |Y | ≥ 2 and dH(v) ≥ 2 for each v ∈ X. It follows that



ROMAN k-DOMINATION IN GRAPHS 1317

c(H) = m(H)− n(H) + ω(H) ≥ 2|X| − |X| − |Y |+ 1 ≥ 2. Hence H and so G
contains at least two cycles, a contradiction to the hypothesis that c(G) ≤ 1.

Assume next that c(G) ≥ 2. Then G contains a cycle C. Let e = uv be
an edge of the cycle C, and define the subgraph H = G − e. Then c(H) =
c(G)− 1 ≥ 1, and therefore we deduce from the induction hypothesis that

(4) γ2R(H) ≥ n + 1− c(H).

Now let f = (V0, V1, V2) be any γ2R-function of G. If f(u) = 0 and f(v) = 2,
then f ′ = (V0 − {u}, V1 ∪ {u}, V2) is a Roman 2-dominating function of H.
Therefore (4) implies the desired bound (3) as follows:

γ2R(G) = |V1|+ 2|V2| = |V1 ∪ {u}|+ 2|V2| − 1
≥ γ2R(H)− 1 ≥ n− c(H) = n + 1− c(G)

Since all the remaining cases are similar to the case f(u) = 0 and f(v) = 2,
the proof of Theorem 2.16 is complete. �

Corollary 2.17. If G is a graph of order n with at most one cycle, then
γkR(G) = n when k ≥ 2.

The graph G of order 7 consisting of two cycles x1x2x3x4x1 and y1y2y3y4y1

with x1 = y1 and the Roman 2-dominating function f such that f(x1) =
f(x3) = f(y3) = 2 and f(x2) = f(x4) = f(y2) = f(y4) = 0 shows that
Corollary 2.17 is no longer true if the graph contains more than one cycle.

Applying this example, it is easy to see that the Roman 2-domination num-
ber γ2R(Gi,j) < ij for each i × j grid Gi,j when i, j ≥ 3. In addition, it is
a simple matter to prove that γ3R(Gi,j) < ij when i ≥ 5 and j ≥ 9, and
Proposition 2.14 implies that γkR(Gi,j) = ij when k ≥ 4.

For the next result, we use the following lemma, which can be found in [10]
on p. 30.

Lemma 2.18. If G is a cactus graph, then 2m(G) ≤ 3n(G)− 3.

Proposition 2.19. If G is a cactus graph of order n, then γkR(G) = n when
k ≥ 3.

Proof. Clearly, it is enough to show that γ3R(G) = n. Suppose on the contrary
that γ3R(G) < n. According to Theorem 2.15, G contains a bipartite subgraph
H with bipartition X, Y such that |X| > |Y | ≥ 3 and dH(v) ≥ 3 for each
v ∈ X. It follows that 2m(H) ≥ 6|X| > 3|X| + 3|Y | > 3n(H) − 3. Applying
Lemma 2.18, we arrive at the contradiction that H and so G is not a cactus
graph. �

Let Wn be a wheel of order n. We finally notice that γkR(Wn) = n for k ≥ 3,
γR(Wn) = 2 and γ2R(Wn) = d 2(n−1)

3 e+ 2 when n ≥ 4.
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