ROMAN k-DOMINATION IN GRAPHS

Karsten Kämmerling and Lutz Volkmann

Abstract

Let k be a positive integer, and let G be a simple graph with vertex set $V(G)$. A Roman k-dominating function on G is a function f : $V(G) \rightarrow\{0,1,2\}$ such that every vertex u for which $f(u)=0$ is adjacent to at least k vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $f\left(v_{i}\right)=2$ for $i=1,2, \ldots, k$ The weight of a Roman k-dominating function is the value $f(V(G))=$ $\sum_{u \in V(G)} f(u)$. The minimum weight of a Roman k-dominating function on a graph G is called the Roman k-domination number $\gamma_{k R}(G)$ of G. Note that the Roman 1-domination number $\gamma_{1 R}(G)$ is the usual Roman domination number $\gamma_{R}(G)$. In this paper, we investigate the properties of the Roman k-domination number. Some of our results extend these one given by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2] in 2004 for the Roman domination number.

1. Terminology and introduction

We consider finite, undirected and simple graphs G with vertex set $V(G)$ and edge set $E(G)$. The number of vertices $|V(G)|$ of a graph G is called the order of G and is denoted by $n=n(G)$.

The open neighborhood $N(v)=N_{G}(v)$ of a vertex v consists of the vertices adjacent to v and $d(v)=d_{G}(v)=|N(v)|$ is the degree of v. The closed neighborhood of a vertex v is defined by $N[v]=N_{G}[v]=N(v) \cup\{v\}$. The maximum degree of a graph G is denoted by $\Delta(G)=\Delta$. For a subset $S \subseteq V(G)$, we define $N(S)=N_{G}(S)=\bigcup_{v \in S} N(v), N[S]=N_{G}[S]=N(S) \cup S$, and $G[S]$ is the subgraph induced by S. The complement of a graph G is denoted by \bar{G}. If $\omega(G)$ is the number of components of G and $m(G)=|E(G)|$, then

$$
c(G)=m(G)-n(G)+\omega(G)
$$

is the well-known cyclomatic number of G. A graph is a cactus graph if all its cycles are edge-disjoint.

We write K_{n} for the complete graph of order n, and $K_{p, q}$ for the complete bipartite graph with bipartition X, Y such that $|X|=p$ and $|Y|=q$.

Received April 29, 2008; Revised August 25, 2008.
2000 Mathematics Subject Classification. 05C69.
Key words and phrases. domination, Roman k-domination, Roman domination, k domination.

Let k be a positive integer. A subset $D \subseteq V(G)$ is a k-dominating set of the graph G, if $\left|N_{G}(v) \cap D\right| \geq k$ for every $v \in V(G)-D$. The k-domination number $\gamma_{k}(G)$ is the minimum cardinality among the k-dominating sets of G. Note that the 1-domination number $\gamma_{1}(G)$ is the classical domination number $\gamma(G)$. A k-dominating set of minimum cardinality of a graph G is called a $\gamma_{k}(G)$-set.

In this paper, we study an extension of the Roman dominating function which is suggested by an article in Scientific American by Ian Steward, entitled "Defend the Roman Empire!" [9]. According to [2], Constantine the Great (Emperor of Rome) issued a decree in the 4th century A.D. for the defense of his cities. He decreed that any city without a legion stationed to secure it must neighbor another city having two stationed legions. If the first were attacked, then the second could deploy a legion to protect it without becoming vulnerable itself. The objective, of course, is to minimize the total number of legions needed. However, the Roman Empire has had a lot of enemies, and if a number of k enemies attack k cities without a legion, then these cities are secured in the above sense if they are neighbored to at least k cities having two stationed legions. This leads in a natural way to the following generalization of the Roman dominating function.

A Roman k-dominating function on G is a function $f: V(G) \rightarrow\{0,1,2\}$ such that every vertex u for which $f(u)=0$ is adjacent to at least k vertices $v_{1}, v_{2}, \ldots, v_{k}$ with $f\left(v_{i}\right)=2$ for $i=1,2, \ldots, k$. The weight of a Roman k dominating function is the value $f(V(G))=\sum_{u \in V(G)} f(u)$. The minimum weight of a Roman k-dominating function on a graph G is called the Roman k domination number $\gamma_{k R}(G)$ of G. Note that the Roman 1-domination number $\gamma_{1 R}(G)$ is the usual Roman domination number $\gamma_{R}(G)$. A Roman k-dominating function of minimum weight is called a $\gamma_{k R}$-function. If $f: V(G) \rightarrow\{0,1,2\}$ is a Roman k-dominating function, then let $\left(V_{0}, V_{1}, V_{2}\right)$ be the ordered partition of $V(G)$ induced by f, where $V_{i}=\{v \in V(G) \mid f(v)=i\}$ for $i=0,1,2$. Note that there is a 1-1 correspondence between the functions $f: V(G) \rightarrow\{0,1,2\}$ and the ordered partitions $\left(V_{0}, V_{1}, V_{2}\right)$ of $V(G)$. Thus we will write $f=\left(V_{0}, V_{1}, V_{2}\right)$.

In [4], [5], Fink and Jacobson introduced the concept of k-domination, and the definition of the Roman dominating function was given implicitly by Steward [9] and ReVelle and Rosing [8]. For a comprehensive treatment of domination in graphs, see the monographs by Haynes, Hedetniemi and Slater [6], [7].

2. Main results

Our first observation is an extension of a corresponding inequality chain in [2] for $k=1$.

Proposition 2.1. For any graph G

$$
\gamma_{k}(G) \leq \gamma_{k R}(G) \leq 2 \gamma_{k}(G)
$$

Proof. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{k R}$-function of G, then $V_{1} \cup V_{2}$ is a k-dominating set of G and thus $\gamma_{k}(G) \leq\left|V_{1}\right|+\left|V_{2}\right| \leq\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{k R}(G)$.

If D is a γ_{k}-set of G, then $f=(V(G)-D, \emptyset, D)$ is a Roman k-dominating set of G and thus $\gamma_{k R}(G) \leq 2|D|=2 \gamma_{k}(G)$.

Following Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2], we will say that a graph G is a k-Roman graph if $\gamma_{k R}(G)=2 \gamma_{k}(G)$.
Proposition 2.2. A graph G is a k-Roman graph if and only if it has a $\gamma_{k R^{-}}$ function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $V_{1}=\emptyset$.

Proof. Let G be a k-Roman graph, and let D be a γ_{k}-set of G. Then $f=$ $(V(G)-D, \emptyset, D)$ is a Roman k-dominating function of G such that

$$
f(V(G))=2|D|=2 \gamma_{k}(D)=\gamma_{k R}(G)
$$

and therefore f is a $\gamma_{k R}$-function with $V_{1}=\emptyset$.
Conversely, let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{k R}$-function with $V_{1}=\emptyset$ and thus $\gamma_{k R}(G)=2\left|V_{2}\right|$. Then V_{2} is also a k-dominating set of G, and hence it follows that $2 \gamma_{k}(G) \leq 2\left|V_{2}\right|=\gamma_{k R}(G)$. Applying Proposition 2.1, we obtain the identity $\gamma_{k R}(G)=2 \gamma_{k}(G)$, i.e., G is a k-Roman graph.

Corollary 2.3 ([2]). A graph G is a 1-Roman graph if and only if it has a γ_{R}-function $f=\left(V_{0}, V_{1}, V_{2}\right)$ with $V_{1}=\emptyset$.

Proposition 2.4. If G is a graph of order n, then the following conditions are equivalent:
(i) $\gamma_{k}(G)=\gamma_{k R}(G)$,
(ii) $\gamma_{k}(G)=n$,
(iii) $\Delta(G) \leq k-1$.

Proof. Assume that $\gamma_{k}(G)=\gamma_{k R}(G)$. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a $\gamma_{k R}$-function of G, then the assumption implies that we have equality in $\gamma_{k}(G) \leq\left|V_{1}\right|+\left|V_{2}\right| \leq$ $\left|V_{1}\right|+2\left|V_{2}\right|=\gamma_{k R}(G)$. This implies that $\left|V_{2}\right|=0$ and hence we deduce that $\left|V_{0}\right|=0$. Therefore $\gamma_{k}(G)=\gamma_{k R}(G)=\left|V_{1}\right|=|V(G)|=n$.

Clearly, if $\gamma_{k}(G)=n$, then $\Delta(G) \leq k-1$.
If $\Delta(G) \leq k-1$, then $\gamma_{k}(G)=n$ is immediate and thus Proposition 2.1 shows that $\gamma_{k}(G)=\gamma_{k R}(G)$.

Corollary 2.5 ([2]). Let G be a graph of order n. Then $\gamma(G)=\gamma_{R}(G)$ if and only if $G=\overline{K_{n}}$.

Proposition 2.6. If G is a graph of order n, then

$$
\gamma_{k R}(G) \geq \min \left\{n, \gamma_{k}(G)+k\right\}
$$

Proof. If $\gamma_{k R}(G)=n$, then we are done. Assume now that $\gamma_{k R}(G)<n$, and suppose on the contrary that $\gamma_{k R}(G) \leq \gamma_{k}(G)+k-1$. If $f=\left(V_{0}, V_{1}, V_{2}\right)$ is a
$\gamma_{k R}$-function of G, then $V_{1} \cup V_{2}$ is a k-dominating set of G and thus

$$
\begin{aligned}
\gamma_{k}(G) & \leq\left|V_{1}\right|+\left|V_{2}\right| \leq\left|V_{1}\right|+2\left|V_{2}\right| \\
& =\gamma_{k R}(G) \leq \gamma_{k}(G)+k-1 \\
& \leq\left|V_{1}\right|+\left|V_{2}\right|+k-1
\end{aligned}
$$

This implies $\left|V_{2}\right| \leq k-1$ and hence we conclude that $\left|V_{0}\right|=0$. This leads to $\left|V_{2}\right|=0$ and therefore we arrive at the contradiction $\gamma_{k R}(G)=\left|V_{1}\right|=n$.

Proposition 2.7. Let G be a graph of order n.
(i) If $n \leq 2 k$, then $\gamma_{k R}(G)=n$.
(ii) If $n \geq 2 k+1$, then $\gamma_{k R}(G) \geq 2 k$.
(iii) If $n \geq 2 k+1$ and $\gamma_{k}(G)=k$, then $\gamma_{k R}(G)=\gamma_{k}(G)+k=2 k$.

Proof. (i) Assume that $n \leq 2 k$, and suppose on the contrary that $\gamma_{k R}(G)<n$. This implies $\left|V_{0}\right| \geq 1$ and thus $\left|V_{2}\right| \geq k$ for every $\gamma_{k R}$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$. However, this leads to the contradiction $\gamma_{k R}(G)=\left|V_{1}\right|+2\left|V_{2}\right| \geq 2\left|V_{2}\right| \geq 2 k \geq n$.
(ii) Assume that $n \geq 2 k+1$. If $\gamma_{k R}(G)=n$, then we are done. If $\gamma_{k R}(G)<$ n, then $\left|V_{0}\right| \geq 1$ and thus $\left|V_{2}\right| \geq k$ for every $\gamma_{k R}$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$. Therefore we obtain the desired bound $\gamma_{k R}(G)=\left|V_{1}\right|+2\left|V_{2}\right| \geq 2\left|V_{2}\right| \geq 2 k$.
(iii) Assume that $n \geq 2 k+1$ and $\gamma_{k}(G)=k$. If D is a γ_{k}-set of G, then $(V(G)-D, \emptyset, D)$ is a Roman k-dominating set of G and thus $\gamma_{k R}(G) \leq 2|D|=$ $2 k$. Using (ii), we arrive at the desired identity $\gamma_{k R}(G)=2 k=\gamma_{k}(G)+k$.

Theorem 2.8. If G is a graph of order n, then

$$
\begin{equation*}
\gamma_{k R}(G)+\gamma_{k R}(\bar{G}) \geq \min \{2 n, 4 k+1\} \tag{1}
\end{equation*}
$$

Furthermore, equality holds in (1) if and only if $n \leq 2 k$ or $k \geq 2$ and $n=2 k+1$ or $k=1$ and G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$.

Proof. Assume that $n \leq 2 k$. Then Proposition 2.7 (i) shows that

$$
\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=2 n=\min \{2 n, 4 k+1\} .
$$

Assume now that $n \geq 2 k+1$. In addition, assume, without loss of generality, that $\gamma_{k R}(\bar{G}) \geq \gamma_{k R}(G)$. If $\gamma_{k R}(G) \geq 2 k+1$, then we deduce that $\gamma_{k R}(G)+$ $\gamma_{k R}(\bar{G}) \geq 4 k+2$. Therefore (1) is proved, and we notice that equality in (1) is impossible in this case.

In view of Proposition 2.7 (ii), there remains the case that $\gamma_{k R}(G)=2 k<n$. It follows that $\left|V_{0}\right| \geq 1$ and thus $\left|V_{2}\right|=k$ and $\left|V_{1}\right|=0$ for every $\gamma_{k R}$-function $f=\left(V_{0}, V_{1}, V_{2}\right)$. Since $\left|V_{2}\right|=k$, every vertex of V_{0} is adjacent to every vertex of V_{2} in G. Consequently, there is no edge between V_{0} and V_{2} in \bar{G}. Applying Proposition 2.7 again, we see that

$$
\begin{align*}
\gamma_{k R}(\bar{G}) & =\gamma_{k R}\left(\bar{G}\left[V_{2}\right]\right)+\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right) \\
& \geq k+\min \{n-k, 2 k\} \tag{2}\\
& =\min \{n, 3 k\} .
\end{align*}
$$

Combining this with the assumption $\gamma_{k R}(G)=2 k$, we obtain (1).
Clearly, if $k=1$ and G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$, then $\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=4 k+1=5$. If $k \geq 2$ and $n=2 k+1$, then $\gamma_{k R}(G)=2 k$ and, according to $(2), \gamma_{k R}(G)+\gamma_{k R}(\bar{G})=4 k+1$.

Conversely, assume that $\gamma_{k R}(G)+\gamma_{k R}(\bar{G})=4 k+1$. Combining this with (2), we arrive at

$$
2 k+1=\gamma_{k R}(\bar{G})=k+\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right)=\min \{n, 3 k\} .
$$

In the case $k \geq 2$, we conclude that $n=2 k+1$. If $k=1$, then we have seen above that $\left|V_{2}\right|=1,\left|V_{0}\right|=n-1$ and there is no edge between V_{0} and V_{2} in \bar{G}. Thus G has a vertex of degree $n-1$ and, because of $\gamma_{k R}\left(\bar{G}\left[V_{0}\right]\right)=2, \bar{G}$ has a vertex of degree $n-2$.

Corollary 2.9 ([1]). If G is a graph of order $n \geq 3$, then $\gamma_{R}(G)+\gamma_{R}(\bar{G}) \geq$ 5 with equality if and only if G or \bar{G} has a vertex of degree $n-1$ and its complement has a vertex of degree $n-2$.

Next we derive some properties of $\gamma_{k R}$-functions, which extend these one by Cockayne, Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi [2].

Proposition 2.10. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{k R}$-function of a graph G. Then
(a) The complete bipartite graph $K_{k, k+1}$ is not a subgraph of $G\left[V_{1}\right]$.
(b) If $w \in V_{1}$, then $\left|N_{G}(w) \cap V_{2}\right| \leq k-1$.
(c) If $A=\left\{u_{1}, u_{2}, \ldots, u_{k}\right\} \subseteq V_{0}$, then $\mid V_{1} \cap N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right) \cap \cdots \cap$ $N_{G}\left(u_{k}\right) \mid \leq 2 k$.
(d) V_{2} is a γ_{k}-set of the induced subgraph $G\left[V_{0} \cup V_{2}\right]$.
(e) Let $H=G\left[V_{0} \cup V_{2}\right]$, and let $v \in V_{2}$. Then there exists a vertex $u_{1} \in$ $N_{H}(v) \cap V_{0}$ such that u_{1} has exactly $k-1$ neighbors in $V_{2}-\{v\}$. In addition, there exists either a second vertex $u_{2} \in N_{H}(v) \cap V_{0}$ such that u_{2} has exactly $k-1$ neighbors in $V_{2}-\{v\}$ or v has at most $k-1$ neighbors in $V_{2}-\{v\}$.
(f) Let $v \in V_{2}$ such that $d_{G\left[V_{2}\right]}(v)=k-1$ and v has precisely one neighbor in V_{0}, say w, with the property that w has exactly $k-1$ neighbors in $V_{2}-\{v\}$. If $S_{1} \subseteq V_{1}$ is a set such that each vertex of S_{1} has precisely $k-1$ neighbors in $V_{2}-\{v\}$, then $N_{G}(w) \cap S_{1}=\emptyset$.
(g) Let $S_{2} \subseteq V_{2}$ be the set of vertices of degree at least k in $G\left[V_{2}\right]$, and let $C=\left\{x \in V_{0}| | N_{G}(x) \cap V_{2} \mid \geq k+1\right\}$. Then

$$
\left|V_{0}\right| \geq \max \left\{\left|V_{2}\right|+\frac{\left|V_{2}\right|+\left|S_{2}\right|}{k}+|C|\right\}
$$

Proof. (a) Suppose on the contrary that $K_{k, k+1}$ is a subgraph of $G\left[V_{1}\right]$, and let $A=\left\{x_{1}, x_{2}, \ldots, x_{k}\right\}$ and $B=\left\{y_{1}, y_{2}, \ldots, y_{k+1}\right\}$ be a bipartition of $K_{k, k+1}$. Then we observe that $f^{\prime}=\left(V_{0} \cup B, V_{1}-(A \cup B), V_{2} \cup A\right)$ is also a Roman
k-dominating function of G with the weight

$$
\begin{aligned}
f^{\prime}(V(G)) & =\left|V_{1}-(A \cup B)\right|+2\left|V_{2} \cup A\right| \\
& =\left|V_{1}\right|+2\left|V_{2}\right|+|A|-|B| \\
& =\left|V_{1}\right|+2\left|V_{2}\right|-1 \\
& =f(V(G))-1 .
\end{aligned}
$$

This is a contradiction to the hypothesis that f is a $\gamma_{k R}$-function of the graph G and (a) is proved.
(b) Suppose on the contrary that $\left|N_{G}(w) \cap V_{2}\right| \geq k$. Then $f^{\prime}=\left(V_{0} \cup\right.$ $\left.\{w\}, V_{1}-\{w\}, V_{2}\right)$ is also a Roman k-dominating function of G with $f^{\prime}(V(G))=$ $f(V(G))-1$, a contradiction.
(c) Suppose on the contrary that $\left|V_{1} \cap N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right) \cap \cdots \cap N_{G}\left(u_{k}\right)\right| \geq$ $2 k+1$. Let $B=\left\{w_{1}, w_{2}, \ldots, w_{2 k+1}\right\} \subseteq V_{1} \cap N_{G}\left(u_{1}\right) \cap N_{G}\left(u_{2}\right) \cap \cdots \cap N_{G}\left(u_{k}\right)$. Then $f^{\prime}=\left(\left(V_{0}-A\right) \cup B, V_{1}-B, V_{2} \cup A\right)$ is also a Roman k-dominating function of G, and we arrive at the contradiction

$$
\begin{aligned}
f^{\prime}(V(G)) & =\left|V_{1}-B\right|+2\left|V_{2} \cup A\right| \\
& =\left|V_{1}\right|+2\left|V_{2}\right|+2|A|-|B| \\
& =\left|V_{1}\right|+2\left|V_{2}\right|-1 \\
& =f(V(G))-1 .
\end{aligned}
$$

(d) is immediate by the definition of the $\gamma_{k R}$-function of a graph G.
(e) First we note that v has a neighbor in V_{0}. Because otherwise, $f^{\prime}=$ $\left(V_{0}, V_{1} \cup\{v\}, V_{2}-\{v\}\right)$ is also a Roman k-dominating function of G, and we arrive at the contradiction $f^{\prime}(V(G))=f(V(G))-1$.

Let $\left\{u_{1}, u_{2}, \ldots, u_{s}\right\}=N_{H}(v) \cap V_{0}$. If u_{i} has at least k neighbors in $V_{2}-\{v\}$ for each $i=1,2, \ldots, s$, then $f^{\prime}=\left(V_{0}, V_{1} \cup\{v\}, V_{2}-\{v\}\right)$ is also a Roman k-dominating function of G, and we arrive at the contradiction $f^{\prime}(V(G))=$ $f(V(G))-1$. Hence there exists at least one vertex, say u_{1}, in $N_{H}(v) \cap V_{0}$ such that u_{1} has exactly $k-1$ neighbors in $V_{2}-\{v\}$.

If there is a second vertex $w \in N_{H}(v) \cap V_{0}$ such that w has exactly $k-1$ neighbors in $V_{2}-\{v\}$, then we are done. If not, then we suppose on the contrary that v has at least k neighbors in $V_{2}-\{v\}$. Since each vertex in $\left\{u_{2}, u_{3}, \ldots, u_{s}, v\right\}$ has at least k neighbors in $V_{2}-\{v\}$, we conclude that $f^{\prime}=$ $\left(\left(V_{0}-\left\{u_{1}\right\}\right) \cup\{v\}, V_{1} \cup\left\{u_{1}\right\}, V_{2}-\{v\}\right)$ is also a Roman k-dominating function of G. However, this leads to the contradiction $f^{\prime}(V(G))=f(V(G))-1$.
(f) Suppose on the contrary that $N_{G}(w) \cap S_{1} \neq \emptyset$, and let $u \in N_{G}(w) \cap S_{1}$. Then $f^{\prime}=\left(\left(V_{0}-\{w\}\right) \cup\{u, v\}, V_{1}-\{u\},\left(V_{2}-\{v\}\right) \cup\{w\}\right)$ is also a Roman k-dominating function of G, and we arrive at the contradiction $f^{\prime}(V(G))=$ $f(V(G))-1$.
(g) If we suppose that $\left|V_{2}\right|>\left|V_{0}\right|$, then we arrive at the contradiction $\gamma_{k R}(G)=\left|V_{1}\right|+2\left|V_{2}\right|=\left|V_{1}\right|+\left|V_{2}\right|+\left|V_{2}\right|>\left|V_{0}\right|+\left|V_{1}\right|+\left|V_{2}\right|=n$. This implies that $\left|V_{0}\right| \geq\left|V_{2}\right|$.

In view of (e), every vertex $v \in V_{2}$ has a neighbor $u \in V_{0}$ such that u has exactly $k-1$ neighbors in $V_{2}-\{v\}$, and every vertex $v \in S_{2}$ even has at least two neighbors in V_{0} with this property. If $V_{0}^{\prime} \subseteq V_{0}$ consists of all these neighbors, then it follows that $k\left|V_{0}^{\prime}\right| \geq 2\left|S_{2}\right|+\left(\left|V_{2}\right|-\left|S_{2}\right|\right)=\left|V_{2}\right|+\left|S_{2}\right|$. Since all the vertices of V_{0}^{\prime} have precisely k neighbors in V_{2} they are different from these one in $C \subseteq V_{0}$, and thus we deduce that $\left|V_{0}\right| \geq\left(\left|V_{2}\right|+\left|S_{2}\right|\right) / k+|C|$. Combining this with $\left|V_{0}\right| \geq\left|V_{2}\right|$, we obtain the desired bound.

Corollary 2.11 ([2]). Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any γ_{R}-function of a graph G. Then
(a) The induced subgraph $G\left[V_{1}\right]$ has maximum degree 1.
(b) No edge of G joins V_{1} and V_{2}.
(c) Each vertex of V_{0} is adjacent to at most two vertices of V_{1}.
(d) V_{2} is a γ-set of the induced subgraph $G\left[V_{0} \cup V_{2}\right]$.
(e) Let $H=G\left[V_{0} \cup V_{2}\right]$. Then each vertex $v \in V_{2}$ has at least two private neighbors relative to V_{2} in the graph H.
(f) If v is isolated in $G\left[V_{2}\right]$ and has precisely one neighbor in V_{0}, say w, with the property that w has no neighbor in $V_{2}-\{v\}$, then $N_{G}(w) \cap V_{1}=\emptyset$.
(g) Let $S_{2} \subseteq V_{2}$ be the set of non-isolated vertices in $G\left[V_{2}\right]$, and let $C=$ $\left\{x \in V_{0}| | N_{G}(x) \cap V_{2} \mid \geq 2\right\}$. Then $\left|V_{0}\right| \geq\left|V_{2}\right|+\left|S_{2}\right|+|C|$.

The special case $k=1$ of the following lower bound on the Roman k domination number can be find in the article [3].

Theorem 2.12. If G is a graph of order n and maximum degree $\Delta \geq k$, then

$$
\gamma_{k R}(G) \geq \frac{2 n}{\frac{\Delta}{k}+1} .
$$

Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{k R}$-function of G. Since each vertex $v \in V_{0}$ is adjacent to at least k vertices of V_{2}, we deduce that

$$
k\left|V_{0}\right| \leq \Delta\left|V_{2}\right|
$$

This inequality and the hypothesis $\Delta \geq k$ imply the desired bound as follows:

$$
\begin{aligned}
\left(\frac{\Delta}{k}+1\right) \gamma_{k R}(G) & =\left(\frac{\Delta}{k}+1\right)\left(\left|V_{1}\right|+2\left|V_{2}\right|\right) \\
& =\left(\frac{\Delta}{k}+1\right)\left|V_{1}\right|+2\left(\frac{\Delta}{k}+1\right)\left|V_{2}\right| \\
& \geq\left(\frac{\Delta}{k}+1\right)\left|V_{1}\right|+2\left|V_{2}\right|+2\left|V_{0}\right| \\
& \geq 2\left|V_{1}\right|+2\left|V_{2}\right|+2\left|V_{0}\right| \\
& =2 n .
\end{aligned}
$$

Corollary 2.13. If G is a graph of order n and maximum degree $\Delta=k$, then $\gamma_{k R}(G)=n$.

Next we derive a slight extension of Corollary 2.13 for $k \geq 2$.
Proposition 2.14. Let G be a graph of order n. If $\gamma_{k R}(G)<n$, then $\Delta(G) \geq$ $k+2$ or there exist at least k vertices $u_{1}, u_{2}, \ldots, u_{k}$ such that $d_{G}\left(u_{i}\right)=k+1$ for $i=1,2, \ldots, k$.
Proof. Let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{k R}$-function of G. The hypothesis $\left|V_{0}\right|+\left|V_{1}\right|+$ $\left|V_{2}\right|=n>\gamma_{k R}(G)=\left|V_{1}\right|+2\left|V_{2}\right|$ implies $\left|V_{0}\right| \geq\left|V_{2}\right|+1$. Since each vertex $w \in V_{0}$ is adjacent to at least k vertices of V_{2}, we deduce that

$$
\sum_{u \in V_{2}} d_{G}(u) \geq k\left|V_{0}\right| \geq k\left(\left|V_{2}\right|+1\right)
$$

If we suppose on the contrary that $\Delta(G) \leq k+1$ and there are at most $k-1$ vertices of degree at most $k+1$, then we arrive at the contradiction

$$
k\left|V_{2}\right|+k-1 \geq \sum_{u \in V_{2}} d_{G}(u) \geq k\left(\left|V_{2}\right|+1\right)=k\left|V_{2}\right|+k
$$

Now we present a characterization of the graphs G with $\gamma_{k R}(G)<n(G)$.
Theorem 2.15. Let G be a graph of order n. Then $\gamma_{k R}(G)<n$ if and only if G contains a bipartite subgraph H with bipartition X, Y such that $|X|>|Y| \geq k$ and $d_{H}(v) \geq k$ for each $v \in X$.
Proof. Assume first that G contains a bipartite subgraph H with the bipartition X, Y such that $|X|>|Y| \geq k$ and $d_{H}(v) \geq k$ for each $v \in X$. Then $f=$ $(X, V(G)-(X \cup Y), Y)$ is a Roman k-domination function of weight

$$
f(V(G))=|V(G)-(X \cup Y)|+2|Y|=n-|X|+|Y|<n
$$

Conversely, assume that $\gamma_{k R}(G)<n$, and let $\left(V_{0}, V_{1}, V_{2}\right)$ be a $\gamma_{k R}$-function. It follows that $\left|V_{0}\right|+\left|V_{1}\right|+\left|V_{2}\right|=n>\gamma_{k R}(G)=\left|V_{1}\right|+2\left|V_{2}\right|$ and thus $\left|V_{0}\right|>\left|V_{2}\right|$. Since $\left|V_{0}\right|>0$, we deduce that $\left|V_{2}\right| \geq k$. Now define H as the bipartite graph consisting of the bipartition V_{0} and V_{2} together with all edges of G connecting a vertex of V_{0} with a vertex of V_{2}. As $d_{H}(v) \geq k$ for each vertex $v \in V_{0}$, the subgraph H has the desired properties, and the proof is complete.

Finally, we give two applications of Theorem 2.15. It is well-known that a graph G is a forest if and only if its cyclomatic number $c(G)=0$, and that G is a unicyclic graph if and only if $c(G)=1$ (see for example Volkmann [10], pp. 29-31).

Theorem 2.16. Let G be a graph of order n. If $k \geq 2$, then

$$
\begin{equation*}
\gamma_{k R}(G) \geq \min \{n, n+1-c(G)\} \tag{3}
\end{equation*}
$$

Proof. Clearly, it is enough to show that inequality (3) is valid for $k=2$. For $k=2$ we proceed by induction on $c(G)$.

First assume that $c(G) \leq 1$. Suppose on the contrary that $\gamma_{2 R}(G)<n$. According to Theorem 2.15, G contains a bipartite subgraph H with bipartition X, Y such that $|X|>|Y| \geq 2$ and $d_{H}(v) \geq 2$ for each $v \in X$. It follows that
$c(H)=m(H)-n(H)+\omega(H) \geq 2|X|-|X|-|Y|+1 \geq 2$. Hence H and so G contains at least two cycles, a contradiction to the hypothesis that $c(G) \leq 1$.

Assume next that $c(G) \geq 2$. Then G contains a cycle C. Let $e=u v$ be an edge of the cycle C, and define the subgraph $H=G-e$. Then $c(H)=$ $c(G)-1 \geq 1$, and therefore we deduce from the induction hypothesis that

$$
\begin{equation*}
\gamma_{2 R}(H) \geq n+1-c(H) \tag{4}
\end{equation*}
$$

Now let $f=\left(V_{0}, V_{1}, V_{2}\right)$ be any $\gamma_{2 R}$-function of G. If $f(u)=0$ and $f(v)=2$, then $f^{\prime}=\left(V_{0}-\{u\}, V_{1} \cup\{u\}, V_{2}\right)$ is a Roman 2-dominating function of H. Therefore (4) implies the desired bound (3) as follows:

$$
\begin{aligned}
\gamma_{2 R}(G) & =\left|V_{1}\right|+2\left|V_{2}\right|=\left|V_{1} \cup\{u\}\right|+2\left|V_{2}\right|-1 \\
& \geq \gamma_{2 R}(H)-1 \geq n-c(H)=n+1-c(G)
\end{aligned}
$$

Since all the remaining cases are similar to the case $f(u)=0$ and $f(v)=2$, the proof of Theorem 2.16 is complete.

Corollary 2.17. If G is a graph of order n with at most one cycle, then $\gamma_{k R}(G)=n$ when $k \geq 2$.

The graph G of order 7 consisting of two cycles $x_{1} x_{2} x_{3} x_{4} x_{1}$ and $y_{1} y_{2} y_{3} y_{4} y_{1}$ with $x_{1}=y_{1}$ and the Roman 2-dominating function f such that $f\left(x_{1}\right)=$ $f\left(x_{3}\right)=f\left(y_{3}\right)=2$ and $f\left(x_{2}\right)=f\left(x_{4}\right)=f\left(y_{2}\right)=f\left(y_{4}\right)=0$ shows that Corollary 2.17 is no longer true if the graph contains more than one cycle.

Applying this example, it is easy to see that the Roman 2-domination number $\gamma_{2 R}\left(G_{i, j}\right)<i j$ for each $i \times j$ grid $G_{i, j}$ when $i, j \geq 3$. In addition, it is a simple matter to prove that $\gamma_{3 R}\left(G_{i, j}\right)<i j$ when $i \geq 5$ and $j \geq 9$, and Proposition 2.14 implies that $\gamma_{k R}\left(G_{i, j}\right)=i j$ when $k \geq 4$.

For the next result, we use the following lemma, which can be found in [10] on p. 30 .

Lemma 2.18. If G is a cactus graph, then $2 m(G) \leq 3 n(G)-3$.
Proposition 2.19. If G is a cactus graph of order n, then $\gamma_{k R}(G)=n$ when $k \geq 3$.

Proof. Clearly, it is enough to show that $\gamma_{3 R}(G)=n$. Suppose on the contrary that $\gamma_{3 R}(G)<n$. According to Theorem 2.15, G contains a bipartite subgraph H with bipartition X, Y such that $|X|>|Y| \geq 3$ and $d_{H}(v) \geq 3$ for each $v \in X$. It follows that $2 m(H) \geq 6|X|>3|X|+3|Y|>3 n(H)-3$. Applying Lemma 2.18, we arrive at the contradiction that H and so G is not a cactus graph.

Let W_{n} be a wheel of order n. We finally notice that $\gamma_{k R}\left(W_{n}\right)=n$ for $k \geq 3$, $\gamma_{R}\left(W_{n}\right)=2$ and $\gamma_{2 R}\left(W_{n}\right)=\left\lceil\frac{2(n-1)}{3}\right\rceil+2$ when $n \geq 4$.

References

[1] E. W. Chambers, B. Kinnersley, N. Prince, and D. B. West, Extremal problems for Roman domination, unpublished manuscript, 2007.
[2] E. J. Cockayne, P. A. Dreyer Jr., S. M. Hedetniemi, and S. T. Hedetniemi, Roman domination in graphs, Discrete Math. 278 (2004), no. 1-3, 11-22.
[3] E. J. Cockayne, P. J. P. Grobler, W. R. Grüdnlingh, J. Munganga, and J. H. van Vuuren, Protection of a graph, Util. Math. 67 (2005), 19-32.
[4] J. F. Fink and M. S. Jacobson, n-domination in graphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 283-300, Wiley-Intersci. Publ., Wiley, New York, 1985.
[5] \qquad , On n-domination, n-dependence and forbidden subgraphs, Graph theory with applications to algorithms and computer science (Kalamazoo, Mich., 1984), 301-311, Wiley-Intersci. Publ., Wiley, New York, 1985.
[6] T. W. Haynes, S. T. Hedetniemi, and P. J. Slater, Fundamentals of Domination in Graphs, Monographs and Textbooks in Pure and Applied Mathematics, 208. Marcel Dekker, Inc., New York, 1998.
[7] _ Domination in Graphs: Advanced Topics, Monographs and Textbooks in Pure and Applied Mathematics, 209. Marcel Dekker, Inc., New York, 1998.
[8] C. S. ReVelle and K. E. Rosing, Defendens imperium romanum: a classical problem in military strategy, Amer. Math. Monthly 107 (2000), no. 7, 585-594.
[9] I. Steward, Defend the Roman Empire!, Sci. Amer. 281 (1999), 136-139.
[10] L. Volkmann, Graphen an allen Ecken und Kanten, RWTH Aachen 2006, XVI, 377 pp. http://www.math2.rwth-aachen.de/~uebung/GT/graphen1.html.

Karsten Kämmerling
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
Lutz Volkmann
Lehrstuhl II für Mathematik
RWTH Aachen University
52056 Aachen, Germany
E-mail address: volkm@math2.rwth-aachen.de

