Non-isothermal TGA Analysis on Thermal Degradation Kinetics of Modified-NR Rubber Composites

비등온 TGA에 의한 개질NR고무복합재료지 열분해 Kinetics에 관한 해석

  • Oh, Jeong-Seok (Polymeric Materials Research Team, Hyundai-Kia R&D Center) ;
  • Lee, Joon-Mann (Department of Chemical Engineering, Keimyung University) ;
  • Ahn, Won-Sool (Department of Chemical Engineering, Keimyung University)
  • 오정석 (현대기아연구개발본부 고분자재료연구팀) ;
  • 이준만 (계명대학교 화학공학과) ;
  • 안원술 (계명대학교 화학공학과)
  • Published : 2009.09.25

Abstract

Thermal degradation behavior of CR (chloroprene) -modified NR (natural rubber) compounds, having different sulfur/accelerator compositions, was studied by non-isothermal TGA method. Data were analyzed using both Kissinger and Flynn-Wall-Ozawa analysis to assess the activation energies. Activation energy obtained from Kissinger analysis was $147.0{\pm}2.0$ kJ/mol for all samples, showing little effect of sulfur/accelerator composition changes in the samples. On the other hand, activation energy from Flynn-Wall-Ozawa analysis exhibited much variations with conversion, showing average value of $211.6{\pm}19.0$ kJ/mol. From the results, it was considered that whole thermal degradation processes of the samples were composed of complex multiple step processes, of which reaction mechanisms were different from each other.

References

  1. R. Ding and A. I. Leonov, J. Appl. Polym. Sci., 61, 455 (1996) https://doi.org/10.1002/(SICI)1097-4628(19960718)61:3<455::AID-APP8>3.0.CO;2-H
  2. S. Vyazovkin, Handbook of Thermal Analysis and Calorimetry, M. E. Brown and P. K. Gallagher, Editors, Elsevier, N.Y., Vol 5, p 503 (2008)
  3. A. K. Sircar, Thermal Characterization of Polymer Materials, E. A. Turi, Editor, Academic Press, N.Y., Vol 1, p 887 (1997)
  4. E. F. Ngolemasango, M. Bernnett, and J. Clarke, J. Appl. Polym. Sci., 102, 3732 (2006) https://doi.org/10.1002/app.24634
  5. R. L. Clough and K. T. Gillen, Polym. Degrad. Stabil., 38, 47 (1992) https://doi.org/10.1016/0141-3910(92)90022-W
  6. H. E. Kissinger, Anal. Chem., 29, 1702 (1957) https://doi.org/10.1021/ac60131a045
  7. T. Ozawa, Bull. Chem. Soc. Japan, 38, 1881(1965) https://doi.org/10.1246/bcsj.38.1881
  8. J. H. Flynn and L. A. Wall, J. Polym. Sci. Part B: Polym. Lett., 4, 323 (1966) https://doi.org/10.1002/pol.1966.110040504
  9. B. K. Min, D. R. Park, and W. Ahn, Korean J. Chem. Eng., 47, (2009) to be published
  10. J. Y. Lee, H. K. Choi, M. J. Shim, and S. W. Kim, Kor. J. Mater. Res., 7, 229 (1997)
  11. M. Otero, L. F. Calvo, M. V. Gil, A. I. Garcia, and A. Moran, Bioresource Technol., 99, 6311 (2008) https://doi.org/10.1016/j.biortech.2007.12.011
  12. C. D. Doyle, J. Appl. Polym. Sci., 6, 639 (1962) https://doi.org/10.1002/app.1962.070062406