Abundance and Structure of Microbial Loop Components (Bacteria and Protists) in Lakes of Different Trophic Status

  • Chrost, Ryszard J. (Department of Microbial Ecology, Faculty of Biology, University of Warsaw) ;
  • Tomasz, Adamczewski (Department of Microbial Ecology, Faculty of Biology, University of Warsaw) ;
  • Kalinowska, Krystyna (Hydrobiological Station, Centre for Ecological Research, Polish Academy of Sciences) ;
  • Skowronska, Agnieszka (Department of Environmental Microbiology, Faculty of Environmental Sciences and Fisheries, University of Warmia and Mazury)
  • Published : 2009.09.30

Abstract

The abundance, biomass, size distribution, and taxonomic composition of bacterial and protistan (heterotrophic and autotrophic nanoflagellates and ciliates) communities were investigated in six lakes of Masurian Lake District (north-eastern Poland) differing in trophic state. Samples were taken from the trophogenic water layer during summer stratification periods. Image analysis techniques with fluorescent in situ hybridization (FISH) as well as [$^3H$]-methyl-thymidine incorporation methods were applied to analyze differences in the composition and activity of bacterial communities. The greatest differences in trophic parameters were found between the humic lake and remaining non-humic ones. The same bacterial and heterotrophic nanoflagellate (HNF) cell size classes dominated in all the studied lakes. However, distinct increases in the contributions of large bacterial (>$1.0{\mu}m$) and HNF (>$10{\mu}m$) cells were observed in eutrophic lakes. The bacterial community was dominated by the ${\beta}$-Proteohacteria group, which accounted for 27% of total DAPI counts. Ciliate communities were largely composed of Oligotrichida. Positive correlations between bacteria and protists, as well as between nanoflagellates (both heterotrophic and autotrophic) and ciliates, suggest that concentrations of food sources may be important in determining the abundance of protists in the studied lakes.

Keywords

References

  1. Amann, R. I., B. J. Binder, R. J. Olson, S. W. Chisholm, R. Devereux, and D. A. Stahl. 1990. Combination of 16S-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56: 1919- 1925
  2. Arrar, E. J. and G. B. Collins. 1997. Method 445.0. In vitro determination of chlorophyll a and phenophytin a in marine and freshwater algae by fluorescence. National Exposure Research Laboratory. Office of Research and Development. U.S. Environmental Protection Agency
  3. Auer, B. and H. Arndt. 2001. Taxonomic composition and biomass of heterotrophic flagellates in relation to lake trophy and season. Freshwater Biol. 46: 959-972 https://doi.org/10.1046/j.1365-2427.2001.00730.x
  4. Beaver, J. R. and T. L. Crisman. 1982. The trophic response of ciliated protozoans in freshwater lakes. Limnol. Oceanogr. 27: 246-253 https://doi.org/10.4319/lo.1982.27.2.0246
  5. Beaver, J. R. and T. L. Crisman. 1989. Analysis of the community structure of ciliated protozoa relative to trophic state in Florida lakes. Hydrobiologia 174: 177-184 https://doi.org/10.1007/BF00008155
  6. B$\phi$rsheim, K. Y. and G. Bratbak. 1987. Cell volume to cell carbon conversion factors for a bacterivorous Monas sp. enriched from sea water. Mar. Ecol. Prog. Ser. 36: 171-175 https://doi.org/10.3354/meps036171
  7. Carlson, R. E. 1977. A trophic state index for lakes. Limnol. Oceanogr. 22: 361-369 https://doi.org/10.4319/lo.1977.22.2.0361
  8. Chrost, R. J. and H. Rai. 1994. Bacterial secondary production, pp. 92-117. In J. Overbeck and R. J. Chrost (eds.), Microbial Ecology of Lake Plu $\^{a}$see. Springer Verlag
  9. Chr$\acute{o}$st, R. J. and M. A. Faust. 1999. Consequences of solar radiation on bacterial secondary production and growth rates in subtropical coastal water (Atlantic Coral Reef off Belize, Central America). Aquat. Microb. Ecol. 20: 39-48 https://doi.org/10.3354/ame020039
  10. Chrost, R. J., M. Koton, and W. Siuda. 2000. Bacterial secondary production and bacterial biomass in four Mazurian Lakes of differing trophic status. Pol. J. Environ. Stud. 9: 255-266
  11. Chrost, R. J. and W. Siuda. 2006. Microbial production, utilization, and enzymatic degradation of organic matter in the upper trophogenic layer in the pelagial zone of lakes along a eutrophication gradient. Limnol. Oceanogr. 51: 749-762 https://doi.org/10.4319/lo.2006.51.1_part_2.0749
  12. del Giorgio, P. A. and G. Scarborough. 1995. Increase in the proportion of metabolically active bacteria along gradients of enrichment in freshwater and marine plankton: Implications on estimates of bacterial growth and production rates. J. Plankton Res. 17: 1905-1924 https://doi.org/10.1093/plankt/17.10.1905
  13. del Giorgio, P. A., J. M. Gasol, D. Vaqu, P. Mura, S. Agusti, and C. M. Duarte. 1996. Bacterioplankton community structure: Protists control net production and the proportion of active bacteria in a coastal marine community. Limnol. Oceanogr. 41: 1169-1179 https://doi.org/10.4319/lo.1996.41.6.1169
  14. Domaizon, I., S. Viboud, and D. Fontvieille. 2003. Taxon-specific and seasonal variations in flagellates grazing on heterotrophic bacteria in the oligotrophic Lake Annecy - importance of mixotrophy. FEMS Microbiol. Ecol. 46: 317-329 https://doi.org/10.1016/S0168-6496(03)00248-4
  15. Fenchel, T. 1980. Relation between particle size selection and clearance in suspension feeding ciliates. Limnol. Oceanogr. 25: 733-738 https://doi.org/10.4319/lo.1980.25.4.0733
  16. Foissner, W., H. Berger, and J. Schaumburg. 1999. Identification and ecology of limnetic plankton ciliates. Bayerisches. Landesamt f$\"{u}$r Wasserwirtschaft, M$\"{u}$nchen
  17. Goldman, J. C., D. A. Caron, O. K. Andersen, and M. R. Dennet. 1985. Nutrient cycling in a microflagellate food chain: I. Nitrogen dynamics. Mar. Ecol. Prog. Ser. 24: 231-242 https://doi.org/10.3354/meps024231
  18. Gonzalez, J. M., E. B. Sherr, and B. F. Sherr. 1993. Differential feeding by marine flagellates on growing versus starving and on motile versus nonmotile bacterial prey. Mar. Ecol. Prog. Ser. 102: 257-267 https://doi.org/10.3354/meps102257
  19. Hahn, M. W., E. R. B. Moore, and M. G. Höfle. 1999. Bacterial filament formation, a defense mechanism against flagellate grazing, is growth rate-controlled in bacteria of different phyla. Appl. Environ. Microbiol. 65: 25-35
  20. Hahn, M. W. and M. G. Hofle. 2001. Grazing of protozoa and its effect on populations of aquatic bacteria. FEMS Microbiol. Ecol. 35: 113-121 https://doi.org/10.1111/j.1574-6941.2001.tb00794.x
  21. Hitchman, R. B. and H. L. J. Jones. 2000. The role of mixotrophic protists in the population dynamics of the microbial food web in a small artificial pond. Freshwater Biol. 43: 231- 241 https://doi.org/10.1046/j.1365-2427.2000.00541.x
  22. Jardillier, L., M. Basset, I. Domaizon, A. Belan, C. Amblard, M. Richardot, and D. Debroas. 2004. Bottom-up and top-down control of bacterial community composition in the euphotic zone of a reservoir. Aquat. Microb. Ecol. 35: 259-273 https://doi.org/10.3354/ame035259
  23. Jezbera, J., K. Hor ak, and K. Simek. 2005. Food selection by bacterivorous protists: Insight from the analysis of the food vacuole content by means of fluorescence in situ hybridization. FEMS Microbiol. Ecol. 52: 351-363 https://doi.org/10.1016/j.femsec.2004.12.001
  24. Jezbera, J., K. Hor ak, and K. Simek. 2006. Prey selectivity of bacterivorous protists in different size fractions of reservoir water amended with nutrients. Environ. Microbiol. 8: 1330- 1339 https://doi.org/10.1111/j.1462-2920.2006.01026.x
  25. Jurgens, K. and G. Stolpe. 1995. Seasonal dynamics of crustacean zooplankton, heterotrophic nanoflagellates and bacteria in a shallow, eutrophic lake. Freshwater Biol. 33: 27-38 https://doi.org/10.1111/j.1365-2427.1995.tb00383.x
  26. Jurgens, K., J. Pernthaler, S. Schalla, and R. Amann. 1999. Morphological and compositional changes in planktonic bacterial community in response to enhanced protozoan grazing. Appl. Environ. Microbiol. 65: 1241-1250
  27. Kalinowska, K. 2004. Bacteria, nanoflagellates and ciliates as components of the microbial loop in three lakes of different trophic status. Pol. J. Ecol. 52: 19-34
  28. Kivi, K. and O. Setälä. 1995. Simultaneous measurement of food particle selection and clearance rates of planktonic oligotrich ciliates (Ciliophora: Oligotrichina). Mar. Ecol. Prog. Ser. 119: 125-137 https://doi.org/10.3354/meps119125
  29. Koroleff, F. 1983. Determination of phosphorus. Chemistry of the element in seawater, pp. 125-139. In K. Grasshoff, M. Erhardt, and K. Kremling (eds.), Methods of Seawater Analysis. Verlag Chemie, Weinheim
  30. Koton-Czarnecka, M. and R. J. Chrost. 2003. Protozoans prefer large and metabolically active bacteria. Pol. J. Environ. Stud. 12: 325-334
  31. Kufel, L. 2001. Uncoupling of chlorophyll and nutrients in lakes - possible reasons, expected consequences. Hydrobiologia 443: 59-67 https://doi.org/10.1023/A:1017544103583
  32. Lebaron, P., P. Servais, M. Troussellier, C. Courties, G. Muyzer, L. Bernard, et al. 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in abundances, activity and composition. FEMS Microbiol. Ecol. 34: 255-266 https://doi.org/10.1111/j.1574-6941.2001.tb00776.x
  33. Lee, S. and J. A. Fuhrman. 1987. Relationships between biovolume and biomass of naturally derived marine bacterioplankton. Appl. Environ. Microbiol. 53: 1298-1303
  34. Lindstrom, E. S. 2000. Bacterioplankton community composition in five lakes differing in trophic status and humic content. Microb. Ecol. 40: 104-113
  35. Manz, W., R. Amann, W. Ludwig, M. Wagner, and K.-H. Schleifer. 1992. Phylogenetic oligonucleotide probes for the major subclasses of Proteobacteria: Problems and solutions. Syst. Appl. Microbiol. 15: 593-600 https://doi.org/10.1016/S0723-2020(11)80121-9
  36. Manz, W., R. Amann, M. Vancanneyt, and K.-H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga- Flavobacter-Bacteroides in the natural environment. Microbiology 140: 2849-2858 https://doi.org/10.1099/00221287-140-10-2849
  37. Muylaert, K., K. Van der Gucht, N. Vloemans, L. De Meester, M. Gillis, and W. Vyverman. 2002. Relationship between bacterial community composition and bottom-up versus topdown variables in four eutrophic shallow lakes. Appl. Environ. Microbiol. 68: 4740-4750 https://doi.org/10.1128/AEM.68.10.4740-4750.2002
  38. Munster, U. and R. J. Chrost. 1990. Origin, composition, and microbial utilization of dissolved organic matter, pp. 8-46. In J. Overbeck and R. J. Chrost (eds.). Aquatic Microbial Ecology: Biochemical and Molecular Approaches. Springer Verlag, New York
  39. Neef, A. 1997. PhD Thesis. Anwendynng der in situ; Einzelzellidentifizierung von bakterien zur populationsanalyse in komplexen mikrobiellen biozonosen. Technische Universitat M$\"{u}$nchen, Munich, Germany
  40. Pace, M. L. 1986. An empiricial analysis of zooplankton community structure across lake trophic gradients. Limnol. Oceanogr. 31: 45-55 https://doi.org/10.4319/lo.1986.31.1.0045
  41. Pace, M. L., G. B. McManus, and S. E. G. Findlay. 1990. Planktonic community structure determines the fate of bacterial production in a temperate lake. Limnol. Oceanogr. 35: 795- 808 https://doi.org/10.4319/lo.1990.35.4.0795
  42. Pearce, D. A., C. J. Van der Gast, K. Woodward, and K. K. Newsham. 2005. Significant changes in the bacterioplankton community structure of a maritime Antarctic freshwater lake following nutrient enrichment. Microbiology 151: 3237-3248 https://doi.org/10.1099/mic.0.27258-0
  43. Pernthaler, J., B. Sattler, K. Šimek, A. Schwarzenbacher, and R. Pssener. 1996. Top-down effects on the size-biomass distribution of a freshwater bacterioplankton community. Aquat. Microb. Ecol. 10: 255-263 https://doi.org/10.3354/ame010255
  44. Pernthaler, J., F.-O. Gl ckner, W. Schonhuber, and R. Amann. 2001. Fluorescence in situ hybridization with rRNA-targeted oligonucleotide probes. Methods Microbiol. 30: 207-226 https://doi.org/10.1016/S0580-9517(01)30046-6
  45. Pernthaler, A., C. M. Prestom, J. Pernthaler, E. F. Delong, and R. Amann. 2002. A comparison of fluorescently labeled oligonucleotide and polynucleotide probes for detection of pelagic marine bacteria and Archaea. Appl. Environ. Microbiol. 68: 661-667 https://doi.org/10.1128/AEM.68.2.661-667.2002
  46. Pernthaler, J., E. Zollner, F. Warnecke, and K. Jürgens. 2005. Bloom of filamentous bacteria in a mesotrophic lake: Identity and potential controlling mechanism. Appl. Environ. Microbiol. 70: 6272-6281 https://doi.org/10.1128/AEM.70.10.6272-6281.2004
  47. Porter, K. G. and Y. S. Feig. 1980. The use of DAPI for identifying and counting aquatic microflora. Limnol. Oceanogr. 25: 943-948 https://doi.org/10.4319/lo.1980.25.5.0943
  48. Porter, K. G., E. B. Sherr, B. F. Sherr, M. Pace, and R. W. Sanders. 1985. Protozoa in planktonic food webs. J. Protozool. 32: 409-415
  49. Psenner, R. 1993. Determination of size and morphology of aquatic bacteria by automated image analysis. pp. 339-345. In P. F. Kemp, B. F. Sherr, E. B. Sherr, and J. J. Cole (eds.), Handbook of Methods in Aquatic Microbial Ecology. Lewis Publishers, Boca Raton, FL
  50. Putt, M. and D. K. Stoecker. 1989. An experimentally determined carbon: Volume ratio for marine 'oligotrichous' ciliates from estuarine and coastal waters. Limnol. Oceanogr. 34: 1097-1103 https://doi.org/10.4319/lo.1989.34.6.1097
  51. Sanders, R. W., K. G. Porter, S. J. Bennett, and A. E. Debiase. 1989. Seasonal patterns of bacterivory by flagellates, ciliates, rotifers, and cladocerans in freshwater planktonic community. Limnol. Oceanogr. 34: 673-687 https://doi.org/10.4319/lo.1989.34.4.0673
  52. Sanders, R. W., D. A. Caron, and U. G. Berninger. 1992. Relationships between bacteria and heterotrophic nanoplankton in marine and fresh waters: An inter-ecosystem comparison. Mar. Ecol. Prog. Ser. 86: 1-14 https://doi.org/10.3354/meps086001
  53. Schafer, H., L. Bernard, C. Courties, P. Lebaron, P. Servais, R. Pukall, et al. 2001. Microbial community dynamics in Mediterranean nutrient-enriched seawater mesocosms: Changes in the genetic diversity of bacterial populations. FEMS Microbiol. Ecol. 34: 243-253
  54. Schumann, R., U. Schiewer, U. Karoten, and T. Rieling. 2003. Viability of bacteria from different aquatic habitats. II. Cellular fluorescent markers for membrane integrity and metabolic activity. Aquat. Microb. Ecol. 32: 137-150
  55. Skowro ska, A. 2007. Distribution of microbial-selected populations in Lake North Mamry by fluorescent in situ hybridization. Pol. J. Environ. Stud. 16: 123-128
  56. Simek, K., M. Macek, J. Seda, and V. Vyhnalek. 1990. Possible food chain relationships between bacterioplankton, protozoans and cladocerans in a reservoir. Int. Revue ges. Hydrobiol. 75: 583-596 https://doi.org/10.1002/iroh.19900750502
  57. Simek, K., J. Bobkova, M. Macek, J. Nedoma, and R. Psenner. 1995. Ciliate grazing on picoplankton in eutrophic reservoir during summer phytoplankton maximum: A study at the species and community level. Limnol. Oceanogr. 40: 1077-1090 https://doi.org/10.4319/lo.1995.40.6.1077
  58. Simek, K., J. Armengol, M. Comerma, J.-C. Garcia, T. H. Chrzanowski, M. Macek, J. Nedoma, and V. Straskrabova. 1998. Characteristics of protistan control of bacterial production in three reservoirs of different trophy. Int. Rev. Hydrobiol. 83: 485-494
  59. Wallner, G., R. Amann, and W. Beisker. 1993. Optimizing fluorescent in situ hybridization with rRNA-targeted oligonucleotide probes for flow cytometric identification of microorganisms. Cytometry 14: 136-143 https://doi.org/10.1002/cyto.990140205
  60. Weisse, T. 1991. The annual cycle of heterotrophic freshwater nanoflagellates: Role of bottom-up versus top-down control. J. Plankton Res. 13: 167-185 https://doi.org/10.1093/plankt/13.1.167