Carotenogenesis in Haematococcus lacustris: Role of Protein Tyrosine Phosphatases

  • Park, Jae-Kweon (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Tran, Phuong Ngoc (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Hong, Seong-Joo (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University) ;
  • Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
  • Published : 2009.09.30

Abstract

In the present study, we examined the inhibitory effects of protein tyrosine phosphatase (PTPase) inhibitors, including sodium orthovanadate (SOV), ammonium molybdate (AM), and iodoacetamide (IA), on cell growth, accumulation of astaxanthin, and PTPase activity in the photosynthetic algae Haematococcus lacustris. PTPase activity was assayed spectrophotometrically and was found to be inhibited 60% to 90% after treatment with the inhibitors. SOY markedly abolished PTPase activity, significantly activating the accumulation of astaxanthin. These data suggest that the accumulation of astaxanthin in H. lacustris results from the concerted actions of several PTPases.

Keywords

References

  1. Fordham-Skelton, A. P., M. Skipsey, I. M. Eveans, R. Edwards, and J. A. Gatehouse. 1999. Higher plant tyrosine-specific protein phosphatases (PTPs) contain novel amino-terminal domains: Expression during embryogenesis. Plant Mol. Biol. 39: 593- 605 https://doi.org/10.1023/A:1006170902271
  2. Fordham-Skelton, A. P., P. Chilley, V. Lumbreras, S. Reignoux, T. R. Fenton, C. C. Dahm, M. Pages, and J. A. Gatehouse. 2002. A novel higher plant protein tyrosine phosphatase interacts with SNF1-related protein kinases via a KIS (kinase interaction sequence) domain. Plant J. 29: 705-715 https://doi.org/10.1046/j.1365-313X.2002.01250.x
  3. Gupta, S., V. Radha, C. Sudhakar, and G. Swarup. 2002. A nuclear protein tyrosine phosphatase activates p53 and induces caspase-1-dependent apoptosis. FEBS Lett. 532: 61-66 https://doi.org/10.1016/S0014-5793(02)03628-1
  4. Huyer, G., S. Liu, J. Kelly, J. Moffat, P. Payette, B. Kennedy, G. Tsaprailis, M. J. Gresser, and C. Ramachandran. 1997. Mechanism of inhibition of protein-tyrosine phosphatases by vanadate and pervanadate. J. Biol. Chem. 272: 843-851 https://doi.org/10.1074/jbc.272.2.843
  5. Kobayashi, M., T. Kakizono, N. Nishio, and S. Nagai. 1992. Effects of light intensity, light quality, and illumination cycle on astaxanthin formation in a green alga, Haematococcus pluvialis. J. Ferment. Bioeng. 74: 61-63 https://doi.org/10.1016/0922-338X(92)90271-U
  6. Kobayashi, M., T. Kakizono, and S. Nagai. 1993. Enhanced carotenoid biosynthesis by oxidative stress in acetate-induced cyst cells of a green unicellular alga, Haematococcus pluvialis. Appl. Environ. Microbiol. 59: 867-873
  7. Kobayashi, M. 2003. Astaxanthin biosynthesis enhanced by reactive oxygen species in the green alga Haematococcus pluvialis. Biotechnol. Bioprocess Eng. 8: 322-330 https://doi.org/10.1007/BF02949275
  8. Lee, J. H. and Y. T. Kim. 2006. Cloning and characterization of the astaxanthin biosynthesis gene cluster from the marine bacterium Paracoccus haeundaensis. Gene 370: 86-95 https://doi.org/10.1016/j.gene.2005.11.007
  9. Li, Y., M. Sommerfeld, F. Chen, and Q. Hu. 2008. Consumption of oxygen by astaxanthin biosynthesis: A protective mechanism against oxidative stress in Haematococcus pluvialis (Chlorophyceae). J. Plant Physiol. 165: 1783-1797 https://doi.org/10.1016/j.jplph.2007.12.007
  10. Park, B. J., B. M. Kim, S. H. Shim, J. D. Kim, and C. G. Lee. 2006. Enhancement of astaxanthin production of Haematococcus pluvialis by mutation. Korean J. Microbiol. Biotechnol. 34: 136-142
  11. Park, E. K. and C. G. Lee. 2001. Astaxanthin production by Haematococcus pluvialis under various light intensities and wavelengths. J. Microbiol. Biotechnol. 11: 1024-1030
  12. Steinbrenner, J. and G. Sandmann. 2006. Transformation of the green alga Haematococcus pluvialis with a phytoene desaturase for accelerated astaxanthin biosynthesis. Appl. Environ. Microbiol. 72: 7477-7484 https://doi.org/10.1128/AEM.01461-06
  13. Tracey, A. S. and M. J. Gresser. 1986. Interaction of vanadate with phenol and tyrosine: Implications for the effects of vanadate on systems regulated by tyrosine phosphorylation. Proc. Natl. Acad. Sci. U.S.A. 83: 609-613 https://doi.org/10.1073/pnas.83.3.609
  14. Tripathi, U., R. Sarada, S. Ramachandra Rao, and G. A. Ravishankar. 1999. Production of astaxanthin in Haematacoccus pluvialis cultured in various media. Biores. Technol. 68: 197- 199 https://doi.org/10.1016/S0960-8524(98)00143-6
  15. Ulm, R., E. Revenkova, G.-P. di Sansebastiano, N. Bechtold, and J. Paszkowski. 2001. Mitogen-activated protein kinase phosphatase is required for genotoxic stress relief in Arabidopsis. Genes Dev. 15: 699-709 https://doi.org/10.1101/gad.192601
  16. Vidhyavathi, R., L. Venkatachalam, R. Sarada, and G. A. Ravishankar. 2008. Regulation of carotenoid biosynthetic genes expression and carotenoid accumulation in the green alga Haematococcus pluvialis under nutrient stress conditions. J. Exp. Bot. 59: 1409-1418 https://doi.org/10.1093/jxb/ern048
  17. Zhou, B. and Z.-Y. Zhang. 1999. Mechanism of mitogenactivated protein kinase phosphatase-3 activation by ERK2. J. Biol. Chem. 274: 35526-35534 https://doi.org/10.1074/jbc.274.50.35526