Cancer Cell Targeting with Mouse TERT-Specific Group I Intron of Tetrahymena thermophila

  • Ban, Gu-Yee (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Song, Min-Sun (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University) ;
  • Lee, Seong-Wook (Department of Molecular Biology, BK21 Graduate Program for RNA Biology, Institute of Nanosensor and Biotechnology, Dankook University)
  • Published : 2009.09.30

Abstract

Telomerase reverse transcriptase (TERT), which prolongs the replicative life span of cells, is highly upregulated in 85-90% of human cancers, whereas most normal somatic tissues in humans express limited levels of the telomerase activity. Therefore, TERT has been a potential target for anticancer therapy. Recently, we described a new approach to human cancer gene therapy, which is based on the group I intron of Tetrahymena thermophila. This ribozyme can specifically mediate RNA replacement of human TERT (hTERT) transcript with a new transcript harboring anticancer activity through a trans-splicing reaction, resulting in selective regression of hTERT-positive cancer cells. However, to validate the therapeutic potential of the ribozyme in animal models, ribozymes targeting inherent transcripts of the animal should be developed. In this study, we developed a Tetrahymena-based trans-splicing ribozyme that can specifically target and replace the mouse TERT (mTERT) RNA. This ribozyme can trigger transgene activity not only also in mTERT-expressing cells but hTERT-positive cancer cells. Importantly, the ribozyme could selectively induce activity of the suicide gene, a herpes simplex virus thymidine kinase gene, in cancer cells expressing the TERT RNA and thereby specifically hamper the survival of these cells when treated with ganciclovir. The mTERT-targeting ribozyme will be useful for evaluation of the RNA replacement approach as a cancer gene therapeutic tool in the mouse model with syngeneic tumors.

Keywords

References

  1. Bodnar, A. G., M. Ouellette, M. Frolkis, S. E. Holt, C. P. Chiu, G. B. Morin, et al. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349- 352 https://doi.org/10.1126/science.279.5349.349
  2. Byun, J., N. Lan, M. Long, and B. A. Sullenger. 2003. Efficient and specific repair of sickle beta-globin RNA by trans-splicing ribozymes. RNA 9: 1254-1263 https://doi.org/10.1261/rna.5450203
  3. Fiammengo, R. and A. Jaschke. 2005. Nucleic acid enzymes. Curr. Opin. Biotechnol. 16: 614-621
  4. Forsyth, N. R., W. E. Wright, and J. W. Shay. 2002. Telomerase and differentiation in multicellular organisms: Turn it off, turn it on, and turn it off again. Differentiation 69: 188-197 https://doi.org/10.1046/j.1432-0436.2002.690412.x
  5. Greenberg, R. A., R. C. Allsopp, L. Chin, G. B. Morin, and R. A. DePinho. 1998. Expression of mouse telomerase reverse transcriptase during development, differentiation and proliferation. Oncogene 16: 1723-1730 https://doi.org/10.1038/sj.onc.1201933
  6. Hong, S. H., J. S. Jeong, Y. J. Lee, H. I. Jung, K. S. Cho, C. M. Kim, et al. 2008. In vivo reprogramming of hTERT by trans-splicing ribozyme to target tumor cells. Mol. Ther. 16: 74-80 https://doi.org/10.1038/sj.mt.6300282
  7. Jeong, J. S., S. W, Lee, S. H. Hong, Y. J. Lee, H. I. Jung, K. S. Cho, et al. 2008. Antitumor effects of systemically delivered adenovirus harboring trans-splicing ribozyme in intrahepatic colon cancer mouse model. Clin. Cancer Res. 14: 281-290 https://doi.org/10.1158/1078-0432.CCR-07-1524
  8. Jones, J. T., S. W. Lee, and B. A. Sullenger. 1996. Tagging ribozyme reaction sites to follow trans-splicing in mammalian cells. Nature Med. 2: 643-648 https://doi.org/10.1038/nm0696-643
  9. Kohler, U., B. G. Ayre, H. M. Goodman, and J. Haseloff. 1999. Trans-splicing ribozymes for targeted gene delivery. J. Mol. Biol. 185: 1935-1950 https://doi.org/10.1006/jmbi.1998.2447
  10. Kim, A., G. Ban, M. S. Song, C. D. Bae, J. Park, and S. W. Lee. 2007. Selective regression of cells expressing mouse cytoskeleton-associated protein 2 transcript by trans-splicing ribozyme. Oligonucleotides 17: 95-103 https://doi.org/10.1089/oli.2007.0044
  11. Kim, N. W., M. A. Piatyszek, K. R. Prowse, C. B. Harley, M. D. West, P. L. Ho, et al. 1994. Specific association of human telomerase activity with immortal cells and cancer. Science 266: 2011-2015 https://doi.org/10.1126/science.7605428
  12. Kwon, B. S., H. S. Jung, M. S. Song, K. S. Cho, S. C. Kim, K. Kimm, J. S. Jeong, I. H. Kim, and S. W. Lee. 2005. Specific regression of human cancer cells by ribozyme-mediated targeted replacement of tumor-specific transcript. Mol. Ther. 12: 824- 834 https://doi.org/10.1016/j.ymthe.2005.06.096
  13. Lan, N., R. P. Howrey, S. W. Lee, C. A. Smith, and B. A. Sullenger. 1998. Ribozyme-mediated repair of sickle $\beta$- globin mRNAs in erythrocyte precursors. Science 280: 1593- 1596 https://doi.org/10.1126/science.280.5369.1593
  14. Lan, N., B. L. Rooney, S. W. Lee, R. P. Howrey, C. A. Smith, and B. A. Sullenger. 2000. Enhancing RNA repair efficiency by combining trans-splicing ribozymes that recognize different accessible sites on a target RNA. Mol. Ther. 2: 245-255 https://doi.org/10.1006/mthe.2000.0125
  15. Lee, G. P. 2007. A minor transactivation effect of GATA-3 on its target sites in the extrachromosomal status. J. Microbiol. Biotechnol. 17: 2056-2060
  16. Lee, H. Y., N. Naha, J. H. Kim, M. J. Jo, K. S. Mi, H. H. Seong, D. H. Shin, and M. O. Kim. 2008. Age- and areadependent distinct effects of ethanol on Bax and Bcl-2 expression in prenatal rat brain. J. Microbiol. Biotechnol. 18: 1590-1598
  17. Long, M. B., J. P. Jones 3rd, B. A. Sullenger, and J. Byun. 2003. Ribozyme-mediated revision of RNA and DNA. J. Clin. Invest. 112: 312-318
  18. Masutomi, K. and W. C. Hahn. 2003. Telomerase and tumorigenesis. Cancer Lett. 194: 163-172 https://doi.org/10.1016/S0304-3835(02)00703-6
  19. Matthews, T. and R. Boehme. 1988. Antiviral activity and mechanism of action of ganciclovir. Rev. Infect. Dis. 10: S490- S494 https://doi.org/10.1093/clinids/10.Supplement_3.S490
  20. Mesnil, M., C. Piccoli, G. Tiraby, K. Willecke, and H. Yamasaki. 1996. Bystander killing of cancer cells by herpes simplex virus thymidine kinase gene is mediated by connexins. Proc. Natl. Acad. Sci. U.S.A. 93: 1831-1835 https://doi.org/10.1073/pnas.93.5.1831
  21. Meyerson, M., C. M. Counter, E. N. Eaton, L. W. Ellisen, P. Steiner, S. D. Caddle, et al. 1997. hEST2, the putative human telomerase catalytic subunit gene, is up-regulated in tumor cells and during immortalization. Cell 90: 785-795 https://doi.org/10.1016/S0092-8674(00)80538-3
  22. Newbold, R. F. 1997. Genetic control of telomerase and replicative senescence in human and rodent cells. Ciba Found. Symp. 211: 177-189
  23. Phylactou, L. A., C. Darrah, and M. J. Wood. 1998. Ribozymemediated trans-splicing of a trinucleotide repeat. Nat. Genet. 18: 378-381 https://doi.org/10.1038/ng0498-378
  24. Ryu, K. J., J. H. Kim, and S. W. Lee. 2003. Ribozyme-mediated selective induction of new gene activity in hepatitis C virus internal ribosome entry site-expressing cells by targeted transsplicing. Mol. Ther. 7: 386-395 https://doi.org/10.1016/S1525-0016(02)00063-1
  25. Shay, J. W. and S. Bacchetti. 1997. A survey of telomerase activity in human cancer. Eur. J. Cancer 33: 787-791 https://doi.org/10.1016/S0959-8049(97)00062-2
  26. Shay, J. W. and W. E. Wright. 2002. Telomerase: A target for cancer therapeutics. Cancer Cell 2: 257-265 https://doi.org/10.1016/S1535-6108(02)00159-9
  27. Shin, K. S., B. A. Sullenger, and S. W. Lee. 2004. Ribozymemediated induction of apoptosis in human cancer cells by targeted repair of mutant p53 RNA. Mol. Ther. 10: 365-372 https://doi.org/10.1016/j.ymthe.2004.05.007
  28. Shi, H. Y., W. Zhang, R. Liang, S. Abraham, F. S. Kittrell, D. Medina, and M. Zhang. 2001. Blocking tumor growth, invasion, and metastasis by maspin in a syngeneic breast cancer model. Cancer Res. 61: 6945-6951
  29. Smith, L. L., H. A. Coller, and J. M. Roberts. 2003. Telomerase modulates expression of growth-controlling genes and enhances cell proliferation. Nat. Cell Biol. 5: 474-479 https://doi.org/10.1038/ncb985
  30. Song, M. S. and S. W. Lee. 2006. Cancer-selective induction of cytotoxicity by tissue-specific expression of targeted transsplicing ribozyme. FEBS Lett. 580: 5033-5043 https://doi.org/10.1016/j.febslet.2006.08.021
  31. Song, M. S. and S. W. Lee. 2007. An RNA mapping strategy to identify ribozyme-accessible sites on the catalytic subunit of mouse telomerase. Genom. Inform. 5: 32-35
  32. Song, M. S., J. S. Jeong, G. Ban, J. H. Lee, Y. S. Won, K. S. Cho, I. H. Kim, and S. W. Lee. 2008. Validation of tissuespecific promoter-driven tumor-targeting trans-splicing ribozyme system as a multifunctional cancer gene therapy device in vivo. Cancer Gene Ther. 16: 113-125 https://doi.org/10.1038/cgt.2008.64
  33. Sullenger, B. A. and T. R. Cech. 1994. Ribozyme-mediated repair of defective mRNA by targeted trans-splicing. Nature 317: 619-622 https://doi.org/10.1038/371619a0
  34. Sullenger, B. A. 1995. Revising messages traveling along the cellular information highway. Chem. Biol. 2: 249-253 https://doi.org/10.1016/1074-5521(95)90043-8
  35. Weitzman, J. B. and M. Yaniv. 1999. Rebuilding the road to cancer. Nature 400: 401-402 https://doi.org/10.1038/22637