Association of Puroindolines Genotypes and Grain Properties, Milling Performances and Physical Properties of Flour in Korean Wheats

  • Published : 2009.09.30

Abstract

Puroindoline alleles, grain characteristics, milling performances and physical properties of flour of 22 Korean wheat cultivars were evaluated to determine the influence of puroindolines genotypes on grain and flour characteristics and to provide useful information for improving milling and end-use quality in Korean wheat breeding programs. Nine Korean wheat cultivars carried with Pina-D1a/Pinb-D1a, 11 cultivars had Pina-D1a/Pinb-D1b and 2 cultivars were Pina-D1b/Pinb-D1a. Korean wheats carrying with Pina-D1a/Pinb-D1a genotypes showed lower test weight and thousand kernel weight, area and roundness of grain and hardness index in grain characteristics, lower flour yield and higher proportion of break flour in milling performances and lower average particle size of flour, ash and damaged starch content, water retention capacity, yellowness-blueness and higher lightness of flour than wheats with Pina-D1a/Pinb-D1b or Pina-D1b/Pina-D1a genotypes. Pina-D1a/Pinb-D1b genotypes showed lower 1000-kernel weight, grain area, higher average of particle size of flour, higher ash and damaged starch content than Pina-D1b/Pina-D1a genotypes. There was no difference in hardness index of grain, milling performances, flour color between Pina-D1a/Pinb-D1b and Pina-D1b/Pina-D1a genotypes. These results could present the information to improve milling quality and physical properties of flour in Korean wheat breeding programs.

Keywords

References

  1. American Association of Cereal Chemists. 2000. Approved Methods of the AACC. 10th ed. The Association: St. Paul, MN
  2. Barlow, K.K., M.S. Buttrose, D.H. Simmonds, and M. Vesk. 1973. The nature of the starch-protein interface in wheat endosperm. Cereal Chem. 50: 443-454
  3. Bergman, C.J., D.G. Gualberto, K.G. Campbell, M.E. Sorrells, and P.L. Finney. 2000. Kernel morphology variation in a population derived from a soft by hard wheat cross and associations with end-use quality traits. J. Food Qual. 23: 391–407 https://doi.org/10.1111/j.1745-4557.2000.tb00566.x
  4. Berman, M., M.L. Bason, F. Ellison, G. Peden, and C.W. Wrigley. 1996. Image analysis of whole grains to screen for flour-milling yield in wheat breeding. Cereal Chem. 73: 323–327
  5. Bettge, A.D. and C.F. Morris. 2000. Relationships among grain hardness, pentosan fractions, and end-use quality of wheat. Cereal Chem. 77: 241-247 https://doi.org/10.1094/CCHEM.2000.77.2.241
  6. Blochet, J.E., C. Chevalier, E. Forest, E. Pebay-Peyroula, M.F. Gautier, P. Joudrier, M. Pezolet, and D. Marion. 1993. Complete amino-acid sequence of puroindoline, a new basic and cystine-rich protein with a unique tryptophan-rich domain, isolated from wheat endosperm by Triton X-114 phase partitioning. FEBS Lett. 329: 336–340 https://doi.org/10.1016/0014-5793(93)80249-T
  7. Cane, K., M. Spackman, and H.A. Eagles. 2004. Puroindoline genes and their effects on grains quality traits in southern Australian wheat cultivars. Aust. J. Agric. Res. 55: 89–95 https://doi.org/10.1071/AR03108
  8. Chen, F., Z.H. He, X.C. Xia, M. Lillemo, and C.F. Morris. 2005. A new puroindoline b mutation presented in Chinese winter wheat cultivar Jindong 11. J. Cereal Sci. 42: 267-269 https://doi.org/10.1016/j.jcs.2005.03.004
  9. Chen, F., Z.H. He, X.C. Xia, L.Q. Xia, X.Y. Zhang, M. Lillemo, and C.F. Morris. 2006. Molecular and biochemical characterisation of puroindoline a and b alleles in Chinese landraces and historical cultivars. Theor. Appl. Genet. 112: 400–409 https://doi.org/10.1007/s00122-005-0095-z
  10. Chen, F., Z. He, D. Chen, C. Zhang, Y. Zhang, and X. Xia. 2007. Influence of puroindoline alleles on milling performance and qualities of Chinese noodles, steamed bread and pan bread in spring wheats. J. Cereal Sci. 45: 59-66 https://doi.org/10.1016/j.jcs.2006.06.006
  11. Eagles, H.A., K. Cane, R.F. Eastwood, G.J. Hollamby, H. Kuchel, P.J. Martin, and G.B. Cornish. 2006. Contributions of glutenin and puroindoline genes to grain quality traits in southern Australian wheat breeding programs. Aust. J. Agric. Res. 57: 179–186 https://doi.org/10.1071/AR05242
  12. Evers, A.D. and D.J. Stevens. 1985. Starch damage. Pages 321-349 in Advances in Cereal Science and Technology, Vol. II, 3rd ed. Y. Pomeranz, ed. Am. Assoc. Cereal Chem.: St. Paul, MN
  13. Gaines, C.S., P.L. Fnney, and L.C. Andrews.1997. Influence of kernel size and shriveling on soft wheat milling and baking quality. Cereal Chem. 74: 700–704 https://doi.org/10.1094/CCHEM.1997.74.6.700
  14. Gautier, M-F., M-E. Aleman, A. Guirano, D. Marion, and P. Joudrier. 1994. Triticum aestivum puroindolines, two basic cysteine-rich seed proteins: cDNA sequence analysis and developmental gene expression. Plant Mol. Biol. 25: 43–57 https://doi.org/10.1007/BF00024197
  15. Gibson T.S., H.A. Qalla, and B.V. McCleary. 1992. An improved method for the measurement of starch damage in wheat flour. J. Cereal Sci. 15: 15-27 https://doi.org/10.1016/S0733-5210(09)80053-2
  16. Giroux, M.J. and C.F. Morris. 1997. A glycine to serine change in puroindoline b is associated with wheat grain hardness and low levels of starch-surface friabilin. Theor. Appl. Genet. 95: 857–864 https://doi.org/10.1007/s001220050636
  17. Giroux, M.J. and C.F. Morris. 1998. Wheat grain hardness results from highly conserved mutations in the friabilin components puroindoline a and b. Proc. Natl. Acad. Sci. (USA) 95: 6262–6266 https://doi.org/10.1073/pnas.95.11.6262
  18. Giroux, M.J., L. Talbert, D.K. Habernicht, S. Lanning, A. Hemphill, and J.M. Martin. 2000. Association of puroindoline sequence type and grain hardness in hard red spring wheat. Crop Sci. 40: 370–374 https://doi.org/10.2135/cropsci2000.402370x
  19. Greenwell, P. and J.D. Schofield. 1986. A starch granule protein associated with endosperm softness in wheat. Cereal Chem. 63: 379-380
  20. Ikeda, T.M., N. Ohnishi, T. Nagamine, S. Oda, T. Hisatomi, and H. Yano. 2005. Identification of new Puroindoline genotypes and their relationships to flour texture among wheat cultivars, J. Cereal Sci. 41: 1–6 https://doi.org/10.1016/j.jcs.2004.10.002
  21. Jolly, C.J., S. Rahman, A.A. Kortt,and T.J.V. Higgins. 1993. Characterization of the wheat Mr 15000 `grain-softness protein' and analysis of the relationships between its accumulation in the whole seed and grain softness. Theor. Appl. Genet. 86: 589–597 https://doi.org/10.1007/BF00838714
  22. Kruger, J.E. and G. Reed. 1988. Enzymes and Color. Pages 441-500 in: Wheat: Chemistry and Technology, Vol. 1, 3rd ed. Y. Pomeranz, ed. Am. Assoc. Cereal Chem.: St. Paul, MN.
  23. Lillemo, M. and C.F. Morris. 2000. A leucine to proline mutation in puroindoline bis frequently present in hard wheats from Northern Europe. Theor. Appl. Genet. 100: 1100–1107 https://doi.org/10.1007/s001220051392
  24. Marshall, D.R., D.J. Mares, H.J. Moss, and F.W. Ellison. 1986. Effects of grain shape and size on milling yields in wheat. II. Experimental studies. Aust. J. Agric. Res. 37: 331–342 https://doi.org/10.1071/AR9860331
  25. Martin, J.M., R.C. Frohberg, C.F. Morris, L.E. Talbert, and M.J. Giroux. 2001. Milling and bread baking traits associated with puroindoline sequence type in hard red spring wheat. Crop Sci. 41: 228–234 https://doi.org/10.2135/cropsci2001.411228x
  26. Morgan, B.C., J.E. Dexter, and K.R. Preston. 2000. Relationship of Kernel Size to Flour Water Absorption for Canada Western Red Spring Wheat. Cereal Chem. 77: 256-292
  27. Morris C.F., V.L. DeMacon, and M.J. Giroux. 1999. Wheat Grain Hardness Among Chromosome 5D Homozygous Recombinant Substitution Lines Using Different Methods of Measurement. Cereal Chem. 76: 249-254 https://doi.org/10.1094/CCHEM.1999.76.2.249
  28. Morris, C.F., M. Lillemo, M.C. Simeone, M.J. Giroux, S.L. Babb, and K.K. Kidwell. 2001. Prevalence of puroindoline grain hardness genotypes among historically significant North American spring and winter wheats. Crop Sci. 41: 218-228 https://doi.org/10.2135/cropsci2001.411218x
  29. Nagamine, T., T.M. Ikeda, T. Yanagisawa, M. Yanaka, and N. Ishikawa. 2003. The effects of hardness allele Pinb-D1b on the flour quality of wheat for Japanese white salty noodles. J. Cereal Sci. 37: 337–342 https://doi.org/10.1006/jcrs.2002.0505
  30. Nishio, Z., K. Takata, T.M. Ikeda, Y. Fujita, M. Ito, T. Tabaki, W. Maruyama-Funatsuki, H. Yamauchi, and N. Iriki.2005. Influence of screening directions and puroinoline allele on the heritability of small-scale bread-quality tests. Breeding Sci. 55: 303-31 https://doi.org/10.1270/jsbbs.55.303
  31. Ohm, J.B., O.K. Chung, and C.W. Deyoe. 1998. Single-kernel characteristics of hard winter wheats in relation to milling and baking quality. Cereal Chem. 75: 156-161 https://doi.org/10.1094/CCHEM.1998.75.1.156
  32. Osborne, B.G. and R.S. Anderssen. 2003. Single-kernel characterization principles and applications. Cereal Chem. 80: 613-622 https://doi.org/10.1094/CCHEM.2003.80.5.613
  33. Pickering, P.A. and M. Bhave. 2007. Comprehensive analysis of Australian hard wheat cultivars shows limited puroindoline allele diversity. Plant Sci. 172: 371-379 https://doi.org/10.1016/j.plantsci.2006.09.013
  34. Rahman, S., J.C. Jolly, J.H. Skerritt, and A. Wallosheck. 1994. Cloning of a wheat 15-kDa grain softness protein (GSP). GSP is a mixture of puroindoline-like polypeptides. Eur. J. Biochem. 223: 917–925 https://doi.org/10.1111/j.1432-1033.1994.tb19069.x
  35. Ram, S., N. Jain, J. Shoran, and R. Singh. 2005. New frame shift mutation in puroindoline b in Indian wheat cultivars Hyb65 and NI5439. J. Plant Biochem and Biotech. 14: 45-48 https://doi.org/10.1007/BF03263224
  36. Simmonds D.H., K.K. Barlow, and C.W. Rigley. 1973. The biochemical basis of kernel hardness in wheat. Cereal Chem. 50: 553-562
  37. Sourdille, P., M.R. Perretant, P. Charmet, M.F. Leroy, P. Gautier, J.C. Joudrier, J.C. Nelson, M.E. Sorrells, and M. Bernard. 1996. Linkage between RFLP markers and genes affecting kernel hardness in wheat. Theor. Appl. Genet. 93: 580–586 https://doi.org/10.1007/BF00417951
  38. Steve, F.S., K.B. Robert, L.F. Patrick, and E.G. Edward. 1995. Relationship of test weight and kernel properties to milling and baking quality in soft red winter wheat. Crop Sci. 35: 949-953 https://doi.org/10.2135/cropsci1995.0011183X003500040001x
  39. Symes, K.J. 1965. The inheritance of grain hardness in wheat as measured by the particle size index. Aust. J. Agric. Res. 16: 113–123 https://doi.org/10.1071/AR9650113
  40. Wiersma, J.J., R.H. Busch, G.G. Fulcher, and G. Hareland. 2001. Recurrent selection for kernel weight in spring wheat. Crop Sci. 41: 999–1005
  41. Xia, L., F. Chen, Z. He, X. Chen, and C.F. Morris. 2005. Occurrence of Puroindoline Alleles in Chinese Winter Wheats. Cereal Chem. 82: 38-43 https://doi.org/10.1094/CC-82-0038
  42. Zhang, Y., K. Quail, D.C. Mugford, and Z. He. 2005. Milling quality and white salted noodle color of Chinese winter wheat cultivars. Cereal Chem. 52: 633-638 https://doi.org/10.1094/CC-82-0633
  43. Zhou, Y.H., Z.H. He, J. Yan, Y. Zhang, and D. Wang. 2003. An investigation on milling quality of Chinese common wheats. Sci. Agric. Sinica 36: 615-621