Influences of Saliva Substitutes on Salivary Enzymatic Activity

타액대체제가 타액 효소 활성에 미치는 영향

  • Kho, Hong-Seop (Dept. of Oral Medicine & Oral Diagnosis, School of Dentistry & Dental Research Institute, Seoul National University) ;
  • Lee, Sung-Woo (Dept. of Oral Medicine & Oral Diagnosis, School of Dentistry & Dental Research Institute, Seoul National University)
  • 고홍섭 (서울대학교 치과대학 구강내과.진단학 교실, 치학연구소) ;
  • 이승우 (서울대학교 치과대학 구강내과.진단학 교실, 치학연구소)
  • Published : 2009.09.30

Abstract

Many of the protective functions of saliva can be attributed to the biological, physical, structural, and rheological characteristics of salivary glycoproteins. Therefore, the development of ideal saliva substitutes requires understanding of the rheological as well as biological properties of human saliva. In the present study, we investigated the changes of salivary enzymatic activities by saliva substitutes and compared viscosity of saliva substitutes with human saliva. Five kinds of saliva substitutes such as Moi-Stir, Stoppers4, MouthKote, Saliva Orthana, and SNU were used. Lysozyme activity was determined by the turbidimetric method. Peroxidase activity was determined with an NbsSCN assay. $\alpha$-Amylase activity was determined using a chromogenic substrate, 2-chloro-p-nitrophenol linked with maltotriose. The pH values of saliva substitutes were measured and their viscosity values were measured with a cone-and-plate digital viscometer at six different shear rates. Various types of saliva substitutes affected the activities of salivary enzymes in different ways. Stoppers4 enhanced the enzymatic activities of hen egg-white lysozyme, bovine lactoperoxidase (bLP), and $\alpha$-amylase. Saliva Orthana and SNU inhibited bLP activity and enhanced $\alpha$-amylase activity. MouthKote inhibited $\alpha$-amylase activity. Moi-Stir inhibited the enzymatic activities of bLP and $\alpha$-amylase. The pH values were very different according to the types of saliva substitutes. Stoppers4, MouthKote, and Saliva Orthana showed lower values of viscosity at low shear rates and higher values of viscosity at high shear rates compared with unstimulated and stimulated whole saliva. Moi-Stir and SNU displayed much higher values of viscosity than those of natural whole saliva. Collectively, our results indicate that each saliva substitute has its own biological and rheological characteristics. Each saliva substitute affects the enzymatic activity of salivary enzyme and finally oral health in different ways.

타액의 보호작용은 주로 타액 당단백질의 생물학적, 물리적, 구조적 성질 및 유동학적 성질과 관련이 있다. 그러므로 이상적인 타액 대체제의 개발을 위해서는 인체 타액의 생물학적 성질 뿐만 아니라 유동학적 특성을 이해하여야 한다. 본 연구의 목적은 타액 대체제가 인체 타액에 존재하는 효소의 활성에 미치는 영향을 파악하고 다양한 타액 대체제의 점도와 인체 타액의 점도를 비교하기 위해서 시행되었다. Moi-Stir, Stoppers4, MouthKote, Saliva Orthana 및 서울대학교치과병원 타액 대체제(SNU)를 사용하였으며, lysozyme 활성은 turbidimetric 법으로, peroxidase 활성은 NbsSCN 법으로, $\alpha$-amylase 활성은 maltotriose와 결합된 2-chloro-p-nitrophenol를 사용하여 시행하였다. 타액 대체제의 pH를 측정하였으며 cone-and-plate 형태의 점도계를 이용하여 다양한 전단율에서 점도를 측정하였다. 본 연구에 사용된 다양한 타액 대체제는 타액 효소 활성에 각기 다른 영향을 미쳤다. Stoppers4는 hen egg-white lysozyme, bovine lactoperoxidase (bLP) 및 $\alpha$-amylase 활성을 증가시켰고, Saliva Orthana와 SNU는 bLP 활성은 저해하였으며 $\alpha$-amylase 활성은 증가시켰다. MouthKote는 $\alpha$-amylase 활성을 저해하였으며, Moi-Stir는 bLP와 $\alpha$-amylase 활성을 저해하였다. 타액 대체제의 pH는 타액 대체제의 종류에 따라 매우 달랐다. Stoppers4, MouthKote 및 Saliva Orthana는 낮은 전단율에서는 인체 타액보다 낮은 점도를 높은 전단율에서는 인체 타액보다 높은 점도를 나타내었다. Moi-Stir와 SNU는 인체 타액보다 매우 높은 점도를 나타내었다. 결론적으로 본 연구결과는 각각의 타액 대체제는 각기 다른 생물학적 기능과 유동학적 특성을 가지고 있음을 알 수 있다. 타액 대체제의 사용은 사용하는 타액 대체제의 종류에 따라 타액 효소 활성에 각기 다른 영향을 미치고 궁극적으로는 구강건강에 다른 영향을 미칠 수 있을 것이다.

Keywords

References

  1. Fox PC, Busch K, Baum BJ. Subjective reports of xerostomia and objective measures of salivary gland performance. J Am Dent Assoc 1987;115:581-584 https://doi.org/10.1016/S0002-8177(87)54012-0
  2. Mandel ID. The functions of saliva. J Dent Res 1987;66:436-441 https://doi.org/10.1177/00220345870660020901
  3. Sreebny LM, Valdini A. Xerostomia part I: relationship to other oral symptoms and salivary gland performance. Oral Surg Oral Med Oral Pathol 1988;66:451-458 https://doi.org/10.1016/0030-4220(88)90268-X
  4. Porter SR, Scully C, Hegarty AM. An update of the etiology and management of xerostomia. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2004;97:28-46 https://doi.org/10.1016/j.tripleo.2003.07.010
  5. Von Bültzingslowen I, Sollecito TP, Fox PC et al. Salivary dysfunction associated with systemic diseases: systematic review and clinical management recommendations. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103(Suppl 1):S57.e1-S57.e15 https://doi.org/10.1016/j.tripleo.2006.11.010
  6. Ikebe K, Matsida K, Morri K et al. Impact of dry mouth and hyposalivation on oral health-related quality of life of elderly Japanese. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2007;103:216-222 https://doi.org/10.1016/j.tripleo.2005.12.001
  7. Thomson WM, Lawrence HP, Broadbent JM, Poulton R. The impact of xerostomia on oral-health-related quality of life among younger adults. Health Qual Life Outcomes 2006;4:86 https://doi.org/10.1186/1477-7525-4-86
  8. Vissink A, Schaub RMH, Van Rijn LJ, s-Gravenmade EJ, Panders AK, Vermey A. The efficacy of mucincontaining artificial saliva in alleviating symptoms of xerostomia. Gerodontology 1987;6:95-101 https://doi.org/10.1111/j.1741-2358.1987.tb00283.x
  9. Fox PC. Systemic therapy of salivary gland hypofunction. J Dent Res 1987;66:689-692 https://doi.org/10.1177/00220345870660S114
  10. Fox PC. Salivary enhancement therapies. Caries Res 2004;38:241-246 https://doi.org/10.1159/000077761
  11. Levine MJ, Aguirre A, Hatton MN, Tabak LA. Artificial saliva: Present and future. J Dent Res 1987;66:693-698 https://doi.org/10.1177/00220345870660S115
  12. Valdez IH, Fox PC. Diagnosis and management of salivary dysfunction. Crit Rev Oral Biol Med 1993;4: 271-277 https://doi.org/10.1177/10454411930040030301
  13. Levine MJ. Development of artificial salivas. Crit Rev Oral Biol Med 1993;4:279-286 https://doi.org/10.1177/10454411930040030401
  14. Regelink G, Vissink A, Reintsema H, Nauta JM. Efficacy of a synthetic polymer saliva substitute in reducing oral complaints of patients suffering from irradiation-induced xerostomia. Quintessence Int 1998;29:383-388
  15. Epstein JB, Emerton S, Le ND, Stevenson-Moore P. A double-blind crossover trial of Oral Balance gel and Biotene toothpaste versus placebo in patients with xerostomia following radiation therapy. Oral Oncol 1999;35:132-137 https://doi.org/10.1016/S1368-8375(98)00109-2
  16. Vissink A, Waterman HA, 's-Gravenmade EJ, Panders AK, Vermey A. Rheological properties of saliva substitutes containing mucin, carboxymethylcellulose or polyethylenoxide. J Oral Pathol 1984;13:22-28 https://doi.org/10.1111/j.1600-0714.1984.tb01397.x
  17. Vissink A, De Jong HP, Busscher HJ, Arends J,'s-Gravenmade EJ. Wetting properties of human saliva and saliva substitutes. J Dent Res 1986;65: 1121-1124 https://doi.org/10.1177/00220345860650090301
  18. Hatton MN, Levine MJ, Margarone JE, Aguirre A. Lubrication and viscosity features of human saliva and commercially available saliva substitutes. J Oral Maxillofac Surg 1987;45:496-499 https://doi.org/10.1016/S0278-2391(87)80009-5
  19. Olsson H, Axell T. Objective and subjective efficacy of saliva substitutes containing mucin and carboxymethylcellulose. Scand J Dent Res 1991;99:316-319 https://doi.org/10.1111/j.1600-0722.1991.tb01034.x
  20. Vissink A, 's-Gravenmade EJ, Panders AK et al. A clinical comparison between commercially available mucin- and CMC-containing saliva substitutes. Int J Oral Surg 1983;12:232-238 https://doi.org/10.1016/S0300-9785(83)80048-9
  21. Duxbury AJ, Thakker NS, Wastell DG. A double-blind cross-over trial of a mucin-containing artificial saliva. Br Dent J 1989;166:115-120 https://doi.org/10.1038/sj.bdj.4806731
  22. Blixt-Johansen G, Ek AC, Ganowiak W et al. Improvement of oral mucosa with mucin containing artificial saliva in geriatric patients. Arch Gerontol Geriatr 1992;14:193-201 https://doi.org/10.1016/0167-4943(92)90054-8
  23. Johansson G, Andersson G, Attström R, Glantz PO, Larsson K. The effect of Salinum on the symptoms of dry mouth: a pilot study. Gerodontology 1994;11: 46-49 https://doi.org/10.1111/j.1741-2358.1994.tb00102.x
  24. Suh KI, Lee JY, Chung JW, Kim YK, Kho HS. Relationship between salivary flow rate and clinical symptoms and behaviors in patients with dry mouth. J Oral Rehabil 2007;34:739-744 https://doi.org/10.1111/j.1365-2842.2006.01712.x
  25. Park MS, Chung JW, Kim YK, Chung SC, Kho HS. Viscosity and wettability of animal mucin solutions and human saliva. Oral Dis 2007;13:181-186 https://doi.org/10.1111/j.1601-0825.2006.01263.x
  26. Park WK, Chung JW, Kim YK, Chung SC, Kho HS. Influences of animal mucins on lysozyme activity in solution and on hydroxyapatite surfaces. Arch Oral Biol 2006;51:861-869 https://doi.org/10.1016/j.archoralbio.2006.04.002
  27. Lee SG, Jeon EH, Kho HS. Influences of animal mucins on peroxidase activity in solution and on the surface of hydroxyapatite. Korean J Oral Med 2008;33: 229-240
  28. Grossowicz N, Ariel M. Methods for determination of lysozyme activity. Methods Biochem Anal 1983; 29:435-446 https://doi.org/10.1002/9780470110492.ch8
  29. Bennick A, Cannon M. Quantitative study of the interaction of salivary acidic proline-rich proteins with hydroxyapatite. Caries Res 1978;12:159-169 https://doi.org/10.1159/000260326
  30. Mansson-Rahemtulla B, Baldone DC, Pruitt KM, Rahemtulla F. Specific assays for peroxidases in human saliva. Arch Oral Biol 1986;31:661-668 https://doi.org/10.1016/0003-9969(86)90095-6
  31. Cohen RE, Levine MJ. Salivary glycoproteins. In: Tenovuo JO, ed. Human Saliva: Clinical Chemistry and Microbiology. Vol I. Boca Raton, 1989, CRC Press Inc., pp. 101-130
  32. Jolles P, Jolles J. What's new in lysozyme research? Always a model system, today as yesterday. Mol Cell Biochem 1984;63:165-189 https://doi.org/10.1007/BF00285225
  33. Ihalin R, Loimaranta V, Tenovuo J. Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 2006;445:261-268 https://doi.org/10.1016/j.abb.2005.07.004
  34. Laible NJ, Germaine GR. Bactericidal activity of human lysozyme, muramidase-inactive lysozyme, and cationic polypeptides against Streptococcus sanguis and Streptococcus faecalis: inhibition by chitin oligosaccharides. Infect Immun 1985;48:720-728
  35. Ibrahim HR, Matsuzaki T, Aoki T. Genetic evidence that antibacterial activity of lysozyme is independent of its catalytic function. FEBS Letters 2001;506:27-32 https://doi.org/10.1016/S0014-5793(01)02872-1
  36. Ihalin R, Loimaranta V, Tenovuo J. Origin, structure, and biological activities of peroxidases in human saliva. Arch Biochem Biophys 2006;445:261-268 https://doi.org/10.1016/j.abb.2005.07.004
  37. O'Brien PJ. Peroxidases. Chem Biol Interact 2000;129:113-139 https://doi.org/10.1016/S0009-2797(00)00201-5
  38. Tenovuo J. Clinical applications of antimicrobial host proteins lactoperoxidase, lysozyme and lactoferrin in xerostomia: efficacy and safety. Oral Dis 2002;8:23-29 https://doi.org/10.1034/j.1601-0825.2002.1o781.x
  39. Scannapieco FA, Bergy EJ, Reddy MS, Levine MJ. Characterization of the salivary $\alpha$-amylase binding to Streptococcus sanguis. Infect Immun 1989;57: 2853-2863
  40. Scannapieco FA, Torres G, Levine MJ. Salivary $\alpha$-amylase: role in dental plaque and caries formation. Crit Rev Oral Biol Med 1993;4:301-307 https://doi.org/10.1177/10454411930040030701
  41. Iontcheva I, Oppenheim FG, Troxler RF. Human salivary mucin MG1 selectively forms heterotypic complexes with amylase, proline-rich proteins, statherin, and histatins. J Dent Res 1997;76:734-743 https://doi.org/10.1177/00220345970760030501
  42. Soares RV, Siqueira CC, Bruno LS, Oppenheim FG, Offner GD, Troxler RF. MG2 and lactoferrin form a heterotypic complex in salivary secretions. J Dent Res 2003;82:471-475 https://doi.org/10.1177/154405910308200613
  43. Waterman HA, Blom C, Holterman HJ,'s-Gravenmade EJ, Mellena J. Rheological properties of human saliva. Arch Oral Biol 1988;33:589-596 https://doi.org/10.1016/0003-9969(88)90134-3
  44. Glantz P, Friberg S. Time-dependent rheological behaviour of saliva. Odontol Revy 1970;21:279-285