Kernel method for autoregressive data

  • Shim, Joo-Yong (Department of Applied Statistics, Catholic University of Daegu) ;
  • Lee, Jang-Taek (Department of Statistics, Dankook University)
  • Published : 2009.09.30

Abstract

The autoregressive process is applied in this paper to kernel regression in order to infer nonlinear models for predicting responses. We propose a kernel method for the autoregressive data which estimates the mean function by kernel machines. We also present the model selection method which employs the cross validation techniques for choosing the hyper-parameters which affect the performance of kernel regression. Artificial and real examples are provided to indicate the usefulness of the proposed method for the estimation of mean function in the presence of autocorrelation between data.

Keywords

References

  1. Golub, G. H., Heath, M. and Wahba, G. (1979). Generalized cross validation as a method for choosing a good ridge parameter. Technometrics, 21, 215-223. https://doi.org/10.2307/1268518
  2. Juditsky, A, Hjalmarsson, H., Benveniste, A., Deylon, B., Ljung, L., Sjoberg, J. and Zhang, Q. (1995). Nonlinear Black-box modelling in system identification: Mathematical foundations. Automatica, 31, 1725-1750. https://doi.org/10.1016/0005-1098(95)00119-1
  3. Kim, M. S., Park, H. J., Hwang, C., and Shim, J. (2008). Claims reserving via Kernel machine. Journal of Korean Data & Information Science Society, 19, 1419-1417.
  4. Kimeldorf, G. S. and Wahba, G. (1971). Some results on tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  5. Mercer, J. (1909). Functions of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society, A, 415-446.
  6. Shim, J. and Seok, K. H. (2008). Kernel poisson regression for longitudinal data. Journal of Korean Data & Information Science Society, 19, 1353-1360.
  7. Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
  8. Vapnik, V. N. (1995). The nature of statistical learning theory, Springer, New York.
  9. Vapnik, V. N. (1998). Statistical learning theory, John Wiley, New York.