DOI QR코드

DOI QR Code

THE COMPARISON OF GENE EXPRESSION FROM HUMAN DENTAL PULP CELLS AND PERIODONTAL LIGAMENT CELLS

사람 치수 세포와 치주 인대 세포의 유전자 발현에 관한 비교 연구

  • Hyoun, So (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Park, Sang-Hyuk (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University) ;
  • Choi, Gi-Woon (Department of Conservative Dentistry, Division of Dentistry, Graduate of Kyung Hee University)
  • 소현 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 박상혁 (경희대학교 대학원 치의학과 치과보존학교실) ;
  • 최기운 (경희대학교 대학원 치의학과 치과보존학교실)
  • Published : 2009.09.30

Abstract

The purpose of this study was to characterize functional distinction between human dental pulp cells(PC) and periodontal ligament cells(PDLC) using cDNA micro array assay and to confirm the results of the microarray assay using RT-PCR. 3 genes out of 51 genes which were found to be more expressed(>2 fold) in PC were selected, and 3 genes out of 19 genes which were found to be more expressed(>2 fold) in PDLC were selected for RT-PCR as well. According to this study, the results were as follows: 1. From the micro array assay, 51 genes were more expressed (2 fold) from PC than PDLC. 2. RT-PCR confirmed that ITGA4 and TGF ${\beta}2$ were more expressed in PC than in PDLC 3. From the micro array assay, 19 genes were more expressed (2 fold) from PDLC than PC. 4. RT-PCR confirmed that LUM, WISP1. and MMP1 were more expressed in PDLC than in PC. From the present study, different expression of the genes between the PC and PDLC were characterized to show the genes which play an important role in dentinogenesis were more expressed from PC than PDLC, while the genes which were related with collagen synthesis were more expressed from PDLC than PC.

본 연구는 사람 치수세포 및 치주인대세포의 차이를 알아보고자 배양한 각각의 세포를 CDNA microarray assay를 통하여 유전자의 발현정도의 차이를 비교하였다. 그 결과를 바탕으로 각각의 세포에서 2배 이상의 유전자 발현의 차이를 보이는 유전자중 특징적인 3가지 유전자를 선택하여 RT-PCR로 검증한 결과 다음과 같은 결론을 얻었다; 1. Microarray assay 결과, 치주인대 세포에 비해 치수 세포에서 2배 이상 발현한 유전자 수는 총 51개가 나타났다. 2. RT-PCR의 결과, 치주인대세포에 비해 치수 세포에서 ITGA4, TGF-${\beta}2$ 등이 높게 나타났다. 3. Microarray assay결과, 치수 세포에서 비해 치주인대 세포에서 2배 이상 발현한 유전자 수는 총 19개가 나타났다. 4. RT-PCR의 결과, 치수 세포에 비해 치주인대세포에서 LUM, WISP1, MMP1 등이 높게 나타났다. 본 연구 결과로 치수세포에는 상아질 형성에 관여하는 특징적인 유전자가 치주인대세포에 비해 높게 발현되었으며, 치주인대세포에는 교원질 합성에 관여하는 특징적인 유전자가 치수세포에 비해 높게 발현되어, 치수세포와 치주인데 세포는 유전자 발현의 차이가 나타남을 알 수 있었다.

Keywords

References

  1. Ruch JV. Tooth morphogenesis and differentiation In: Linde A(ed). Dentin and Dentinogenesis. Boca Raton, FL: CRC press, 47-79, 1984
  2. Kikuchi H, Sawada T, and Yahnagisawa T. Effects of a functional agar surface on in vitro dentinogenesis induced in proteolytically isolated agar-coated dental papillae in rat mandibular incisors. Arch Oral Biol 41:871-883, 1996 https://doi.org/10.1016/S0003-9969(96)00022-2
  3. Ruch JV. Odontoblast differentiation and the formation of the odontoblast layer. J Dent Res 64S:489-498, 1985
  4. Ruch JV. Odontoblast differentiation and the formation of the odontoblast layer. J Dent Res 64S:489-498, 1985
  5. Osman M and Ruch JV. Behavior of odontoblast and basal lamina of trypsin or EDTA-isolated mouse dental papillae in short-term culture. J Dent Res 60: 1015-1027, 1981 https://doi.org/10.1177/00220345810600060301
  6. Ruch JV. Odontoblast commitment and differentiation. Biochem cell Biol 76: 923-938, 1998 https://doi.org/10.1139/bcb-76-6-923
  7. Gronthos S, Brahim J, W Li, Fisher LW, Cherman N, Boyde A, Denbesten P, Gehron Robey P, and Shi S. Stem Cell Properties of Human Dental Pulp Stem Cells. J Dent Res 81(8):531-535, 2002 https://doi.org/10.1177/154405910208100806
  8. Miura M, Gronthos S, Zhao M, Lu B, Fisher LW, Robey PG, and Shi S: SHED: Stem cells from human exfoliated decidous teeth. Proc Natl Acad Sci 100: 5807-5812, 2003 https://doi.org/10.1073/pnas.0937635100
  9. McCulloch CA. Origin and function of cells essential for periodontal repair: the role of fibroblasts in tissue homeostasis. Oral Dis 1(4):271-278, 1995 https://doi.org/10.1111/j.1601-0825.1995.tb00193.x
  10. Seo BM, Miura M, Gronthos S, Bartold PM, Batouli S, Brahim J, Young M, Robey PG, Wang CY, and Shi S: Investigation of multipotent postnatal stem cells from human periodontal ligament. Lancet 364:149-155, 2004 https://doi.org/10.1016/S0140-6736(04)16627-0
  11. Paakkonen V, Ohlmeier S, Bermann U, Larmas M, Salo T, and Tja¨derhane L. Analysis of gene and protein expression in healthy and carious tooth pulp with cDNA microarray and two-dimensional gel electrophoresis. Eur J Oral Sci 113: 369-379, 2005 https://doi.org/10.1111/j.1600-0722.2005.00237.x
  12. Shi S, Robey PG, and Gronthos S. Comparison of Human Dental Pulp and Bone Marrow Stromal Cells by cDNA Microarray Analysis. Bone 295: 532-539, 2001
  13. Wang PL, Ohura K, Fujii T, Oido-Mori M, Kowashi Y, Kikuch M, Suetsugu Y, and Tanaka J. DNA microarray analysis of human gingival fibroblasts from healthy and inflammatory gingival tissues. Biochem Biophys Res Commun 305:970-973, 2003 https://doi.org/10.1016/S0006-291X(03)00821-0
  14. Han X, Bolcato L, and Amar S. Identification of Genes Differentially Expressed in Cultured Human Osteoblasts Versus Human Fibroblasts by DNA Microarray Analysis. Connect Tissue Res 43: 63-75, 2002. https://doi.org/10.1080/713713426
  15. Nair PNR. Pathogenesis of Apical Periodontitis and the Cause of Endodontic Failures. Crit Rev Oral Biol Med 15(6): 348-381, 2004 https://doi.org/10.1177/154411130401500604
  16. Anand PS and Nandakumar K. Management of Periodontitis Associated with Endodontically Involved Teeth: A Case Series. J Contemp Dent Pract 2(6):118- 129, 2005
  17. Satchell PG, Gutmann JL, and Witherspoon DE. Apoptosis: an introduction for the endodontist. Int Endod J 36: 237-245, 2003 https://doi.org/10.1046/j.1365-2591.2003.00657.x
  18. Han X and Amar S. Identification of genes differentially expressed in cultured human periodontal ligament fibroblasts vs. human gingival fibroblasts by DNA microarray analysis. J Dent Res 81(6):399-405, 2002 https://doi.org/10.1177/154405910208100609
  19. Chen S, Santos L, Wu Y, Vuong R, Gay I, Schulze J, Chuang HH, and MacDougall M. Altered gene expression in human cleidocranial dysplasia dental pulp cells. Arch Oral Biol 50:227-236, 2005 https://doi.org/10.1016/j.archoralbio.2004.10.014
  20. Kamata N, Fujimoto R, Tomonari M, Taki M, Nagayama M, and Yasumoto S. Immortalization of human dental papilla, dental pulp, periodontal ligament cells and gingival fibroblasts by telomerase reverse transcriptase. J Oral Pathol Med 33:417-423, 2004 https://doi.org/10.1111/j.1600-0714.2004.00228.x
  21. Silva TA, Rosa AL, and Lara VS. Dentin matrix proteins and soluble factors: intrinsic regulatory signals for healing and resorption of dental and periodontal tissues. Oral Diseases 10:63-74, 2004 https://doi.org/10.1111/j.1601-0825.2004.00992.x
  22. Asano M, Kubota S, Nakanishi T, Nishida T, Yamaai T, Yosimich G, Ohyama K, Sugimoto T, Murayama Y, and Takigawa M. Effect of connective tissue growth factor (CCN2/CTGF) on proliferation and differentiation of mouse periodontal ligament-derived cells. Cell Commun Signal 5:3-11, 2005
  23. Zhu Q, Safavi KE, and Spanberg LS. Intergin expression in human dental pulp cells and their role in cell attachment on extracellular matrix proteins. J Endod 24(10):641-644, 1998 https://doi.org/10.1016/S0099-2399(98)80145-3
  24. Luthman J, Luthman D, and Hokfelt T. Occurrence and distribution of different neurochemical markers in the human dental pulp. Arch Oral Biol 37(3):193-208. 1992 https://doi.org/10.1016/0003-9969(92)90089-Q
  25. Beck LS. In vivo induction of bone by recombinant human transforming growth factor beta 1. J Bone Miner Res 6:961-968, 1991 https://doi.org/10.1002/jbmr.5650060910
  26. Machwate M, Julienne A, and Moukhtar M. Temporal variation of c-fos proto-oncogene expression during osteoblast differentiation and osteogenesis in developing rat bone. J Cell Biochem 57:62-70, 1995 https://doi.org/10.1002/jcb.240570108
  27. Centrella M, McCarthy TL, and Canalis E. Transforming growth factor beta and remodeling of bone. J Bone Joint Surg Am 73A:1418-1428, 1991
  28. Ingram RT, Bonde SK, Riggs BL, and Fitzpatrick LA. Effects of transforming growth factor beta and 1,25- dihydroxyvitamin D3 on the function, cytochemistry and morphology of normal human osteoblast-like cells. Differentiation 55:153-163, 1994 https://doi.org/10.1046/j.1432-0436.1994.5520153.x
  29. Ripamonti U, Duneas N, Van den Heever B, Bosch C, and Crooks J. Recombinant transforming growth factor beta induces endochondral bone in the baboon and synergizes with recombinant osteogenic protein-1(bone morphorgenetic protein-7) to initiate rapid bone formation. J Bone Miner Res 12:1584-1595, 1997 https://doi.org/10.1359/jbmr.1997.12.10.1584
  30. Rosen D, Miller SC, DeLeon E, Thompson AY, Bentz H, Mathews M, and Adams S. Systemic adminstration of recombinant transforming growth factor beta 2 stimulates parameters of cancellous bone formation in juvenile and adult rats. Bone 15:355-359, 1994 https://doi.org/10.1016/8756-3282(94)90300-X
  31. Toyono T, Nakashima M, Kuhara S, and Akamine A. Expression of TGF-beta superfamily receptors in dental pulp. J Dent Res 76:1555-60, 1997 https://doi.org/10.1177/00220345970760090701
  32. Sloan AJ, Matthews JB, and Smith AJ. TGF-beta receptor expression in human odontoblasts and pulp cells. Histochem J 31:565-569, 1999 https://doi.org/10.1023/A:1003852409574
  33. Gusman H, Santana RB, and Zehnder M. Matrix metalloproteinase and gelatinolytic activity in clinically healthy and inflammed human dental pulps. Eur J Oral Sci 110(5):353-357, 2003 https://doi.org/10.1034/j.1600-0722.2002.21347.x
  34. Shin SJ, Lee JI, Baek SH, and Lim SS. Tissue levels of matrix metalloproteinase in pulps and periapical lesions. J Endod 28(4):313-315, 2002 https://doi.org/10.1097/00004770-200204000-00013
  35. Lin SK, Wang CC, Huang S, Lee JJ, Chiang CP, Lan WH, and Hong CY. Induction of dental pulp fibroblast matrix metalloproteinase-1 and tissue inhibitor of metalloproteinase- 1 gene expression by interleukin-1 alpha and tumor necrosis factor alpha through a prostaglandin-dependent pathway. J Endod 27(3): 185-189, 2001 https://doi.org/10.1097/00004770-200103000-00012
  36. Ababneh KT, Hall RC, and Embery G. The proteoglycans of human cementum : immunohistochemcal localization in healthy, periodontally involved and ageing teeth. J Periodontal Res 34(2): 87-96, 1999 https://doi.org/10.1111/j.1600-0765.1999.tb02227.x
  37. Hall RC, Embery G, and Lloyd D. Immunochemical localization of the small leucin-rich proteoglycan lumican in human predentin and dentin. Arch Oral Biol 42(10-11):783-786, 1997 https://doi.org/10.1016/S0003-9969(97)00024-1
  38. Chakravarti S, Wu F, Vij N, Roberts L, and Joyce S. Microarray studies reveal macrophage-like function of stromal keratocytes in the cornea. Invest Opthalmol Vis Sci 45(10): 3475-3484, 2004 https://doi.org/10.1167/iovs.04-0343

Cited by

  1. Gene expression profiling in human dental pulp cells treated with mineral trioxide aggregate vol.35, pp.3, 2010, https://doi.org/10.5395/JKACD.2010.35.3.152