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Non—-Overlapped Single/Double Gate SOI/GOI
MOSFET for Enhanced Short Channel Immunity

Sudhansh Sharma*** and Pawan Kumar**

Abstract— In this paper we analyze the influence of
source/drain (S/D) extension region design for minimizing
short channel effects (SCEs) in 25 nm gate length
single and double gate Silicon—on—Insulator (SOI)
and Germanium—on-Insulator (GOI) MOSFETs. A
design methodology, by evaluating the ratio of the
effective channel length to the natural length for the
different devices (single or double gate FETs) and
technology (SOI or GOI), is proposed to minimize
short channel effects (SCEs). The optimization of
non—overlapped gate—source/drain i.e. underlap channel
architecture is extremely useful to limit the degradation
in SCEs caused by the high permittivity channel
materials like Germanium as compared to that exhibited
in Silicon based devices. Subthreshold slope and
Drain Induced Barrier Lowering results show that
steeper S/D gradients along with wider spacer regions
are needed to suppress SCEs in GOI single/double
gate devices as compared to Silicon based MOSFETs.
A design criterion is developed to evaluate the minimum
spacer width associated with underlap channel design
to limit SCEs in SOI/GOI MOSFETs.

Index Terms—Silicon—on-Insulator (SOI), Germanium—
on—Insulator (GOI), single gate MOSFET, double
gate MOSFET, gate—underlap design, source/drain
(S/D) profile optimization, short channel effects
(SCEs), low—voltage applications
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1. INTRODUCTION

Over the past few years fully depleted (FD) Silicon—
on—Insulator (SOI) based single and multiple gate
MOSFETs have emerged as possible candidates for
device scaling at the end of ITRS roadmap [1]. Amongst
the many possible candidates for scaling, double-gate
silicon (DG) MOSFET: are considered to possess appropriate
features to constitute devices for nanoscale circuit design
because of the excellent suppression of short-channel
effect (SCEs), lower gate leakage current, higher on-
current, and better subthreshold slope values {2, 3]. DG
MOSFETs can be fabricated with their channel in the
plane of the wafer or as vertical structures. DG devices
in the standard configuration have exhibited record
currents [4] whereas other topologies such as the pillar
FET [5] or the FinFET [6-9] are much easier to integrate.
As the body thickness is controlled by lithographic and
etching processes, it will be increasingly difficult to
fabricate vertical devices with ultra thin silicon films.
The problem of access resistance is more severe in
vertical FETs because they lack the equivalent of deep
source/drain region that makes the formation of low
resistance silicide contacts possible [10, 11]. The planar
fabrication approach does allow fabricating ultra thin
body devices, a key requirement for suppressing SCEs.
Controlling the width uniformity of a relatively tall fin
structure (50-60 nm) and then attaining a smooth fin
surface on the roughest plane (110) on the silicon
substrate are the crucial challenges. It has also been
shown that fins with tapered bottom profile degrades
SCEs, produces a non-uniform current flow and current
crowding in the vertical direction [12]. In addition, the
mobility of an aggressively scaled channel greatly
depends on surface roughness-induced scattering.
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In addition to changing the transistor architecture,
channel engineering has been an attractive option to
enhance device performance. One such concept of
channel engineering is the use of ‘“non-overlapped” or
“underlapped” gate—source/drain structure with low—
doped/intrinsic channel [13] to facilitate MOS scaling to
nanoscale gate lengths. In gate—underlap architecture,
source/drain (S/D) extension region profiles are designed
such that the extension region doping does not approach
the gate edge i.c. the channel and extension regions
adjacent to the gate will be without any dopant. The
concept of underlapped channel design has been experi-
mentally applied in bulk — MOSFETs [14] and vertical
FinFETs [15], multi-bridge—channel FETs [16], for digital
applications and planar single gate (SG) SOI MOSFETs
[17] for ultra-low—voltage analog/tf applications. Published
work on underlap MOSFETs has shown great potential
for digital [18-29] and analog/rf applications [30-33].

Recently, Germanium (Ge) has re—attracted interest
for high-performance devices because of its much higher
intrinsic electron and hole mobility compared with
silicon [34-36]. The major problem of Ge CMOS device
fabrication is the thermal and chemical instability of Ge
oxides as gate dielectrics since Ge native oxides give rise
to rough surface and high density of interface states [37,
38]. The best dielectrics for use in Ge MOSFETs are Ge
oxynitrides, which have better stability than native Ge
oxides [39]. The recent development of dielectric films
with high dielectric constants to replace SiO, in Si
MOSFETs becomes promising in implementing such
dielectrics in Ge MOSFETSs. Single gate Ge MOSFETs
with various gate dielectrics (Ge oxynitride and high-x)
have been manufactured and measured recently [40-44].
The improved performance of Ge MOSFETs with
greater mobility than Si MOSFETs was demonstrated
using high-x gate dielectrics [35]. Therefore, it is
worthwhile to raise the possible advantages of replacing
Si with Ge in future DG MOSFETs. In this paper, Ge
based SG or DG devices have been referred as
Germanium—on—Insulator (GOI).

In this paper, we use the expression of effective
channel length for gate—source/drain underlap devices
and natural/characteristic length scale for single and
double gate SOI/GOI MOSFETSs to evaluate the design
criterion to suppress SCEs. Our earlier work [29] high-
lightted the usefulness of lateral S/D doping gradient
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Fig. 1. Schematic diagram of (a) single gate (SG) SOI MOSFET
and (b) double gate (DG) SOI MOSFET.

along with S/D roll-off width to suppress short channel
effects in SOI devices. In this work, we highlight the
usefulness of underlap channel profile to suppress short
channel effects in GOI based SG/DG MOSFETs. Optimal
design guidelines are proposed for 25 nm underlap
channel single/double gate SOI/GOI MOSFETs to
suppress SCEs based on the ratio of effective channel
length to natural/characteristic length. The present work
provides valuable design insights in the performance of
nanoscale DG SOI/GOI devices with optimal S/D
engineering and serves as a tool to optimise important
device and technological parameters for low power 45
and 32 nm technology nodes.

TI. RESULTS AND DISCUSSION

1. Natural length scale (A) and effective channel length
(Leff)

As demonstrated in [2, 45-50] and our earlier paper
[29], the natural length governs the influence of lateral
field on the channel potential and influences the extent
of short channel effects (SCEs) inherent to a structure.
The natural length depends on device geometry and
boundary conditions. Using the same approach as
described in our earlier work [29], the eigenvalue equation
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determining the natural length for single gate (SG) SOI
MOSFETs is given as

(Crox + Chox) knsa sor &i
2 3
knsG s01” & - Crox Coox

)

tan(kqsc sor &i) =

where kusg sor are the eigenvalues for single gate SOI
devices, Ciox (= &x/Tix) is the front oxide capacitance,
Coox (= &x/Thox) 1s the back/buried oxide capacitance, Ty
is the silicon film thickness, Ty, is the front oxide
thickness, Thoy is the buried oxide thickness and &, is the
permittivity of oxide. The relationship between eigen-
value and natural length is described later. Similarly, for
a double gate (DG) SOI MOSFETs, the eigenvalue
equation is obtained as

2 Cox kn &si
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where kg sor is the eigenvalue for double gate SOI
device. For Germanium—on-Insulator (GOI) based SG
and DG devices the eigenvalue equation is obtained as
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where knsg gor and kg gor are the eigenvalues for
single and double gate GOI devices, respectively. The
natural length (4,) can be obtained for SG/DG SOI/GOI
MOFETs as A, =nn/k, [50] where k, represents the
eigenvalue determined from eqns. (1)-(4) for different
types of devices.

To design a device free of short channel effects
(SCEs), the minimum channel potential should be as
small as possible [2, 29, 48-50]. This minimum channel
potential can be decreased by increasing the channel
doping or by reducing the natural length (4,) (or increasing
the eigenvalue, k,). Reduction of A, reduces the
minimum channel potential in a much efficient manner
as compared to increasing the doping which is mainly
done to adjust the threshold voltage. Since 4, depends on
T and Ty, it provides a measure of short channel effects
in a given structure and thus can be interpreted as the
short channel immunity factor of a given structure [29].

A smaller value of 4, implies thin silicon film, thin gate
oxide, lower permittivity for channel material i.e.
improved gate controllability and advanced device
architecture (double instead of single). Thus, as device
dimensions penetrate into nanoscale regime, a smaller
value of 4, is required to operate the device as in the
long channel regime by increasing the L.g/ A, ratio [2, 29,
48-50]. Since the first root of eigenvalue equations
described above is sufficient to describe SCEs in
different devices, we will only focus on the lowest
cigenvalue (4, =nz/ k) in our analysis.

In the present work, we have modeled the effective
channel length in gate—source/drain underlap devices
(SG/DG SOI/GOI FETs) using the expression presented
in [24] and is given as

2/In(10 NSDO
Lew=L, +2s (1 -\/—L—ls/ - (=) )

where 755p is the S/D doping level at which L.y is
extracted, L, is the gate length, s is the S/D roll-off
width (also called as the spacer width), d is the S/D
doping gradient (expressed in nm/decade) evaluated at
the gate edge as d= 1/dNgp(x)/dx. S/D profile was modeled
using the expression Ngp(x) = Nspo exp(- x*/o?) where
Nspo is the peak S/D doping and o; lateral straggle para-
meter, governs the S/D profile roll-off (gz W)

[24] in the channel direction. Although underlap design
can limit SCEs due to longer L. (as compared to
conventional overlap design), an underlap device with a
very wide spacer can result in an additional parasitic
series resistance. This series resistance will not signifycantly
degrade the device performance if operated at lower
drive currents and voltages i.e. underlap design is most
useful for low voltage/power applications.
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Fig. 2. Variation of effective channel length (L.4) with S/D

doping gradient (d) for various values of spacer widths. Notations:
x—x:5/Lg = 0.25, 0—0: s/Ly = 0.50, A—A: s/L, = 0.75.
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Fig. 2 shows the variation of effective channel length
(Les) on S/D doping gradients. A variation of S/D roll-
off widths (s) along with lateral S/D doping gradient (d)
results in the modulation of effective channel length
(L) in a nanoscale non—classical (gate underlap) single
and double gate MOSFET. Wider roll-off widths along
with steeper doping gradient (lower d values) result in a
longer L.y whereas a shorter spacer width along with
gradual doping gradient (higher d values) yields shorter
Les. It is important to note that the optimisation of s and
d for short channel immunity must be considered along
with transistor structural parameters for single and
double gate MOSFETs.

Fig. 3 shows the comparison between the eigenvalues
determined by our approach and using the expression in
[50]. Our results are in good agreement with those
derived by Frank er al. [50] by solving the 2D Poisson’s
equation in the oxide and silicon regions. This shows
that for the device parameters considered in the present
work, solving the 2D Poisson’s equation only in the
silicon film itself is sufficient to provide a reasonable
estimation of SCEs in DG MOSFETs. We have restricted
our analysis to a dielectric with permittivity of 3.9 &, (&,
is the permittivity of free space) as gate dielectric and
therefore eqns. (2)—(5) are reasonable to estimate the
natural/characteristic length in a given structure.
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Fig. 3. Dependence of lowest eigenvalue (k) for DG MOSFET
on silicon film thickness (7;) for various values of gate oxide
thickness (7). Symbols represent k; values calculated for DG
SOI MOSFETs by equation in [50] whereas solid lines rep-
resent k; values for DG SOI MOSFETSs evaluated by eq. (3)
and dotted lines denote k; values for DG GOI MOSFETs
calculated by eq. (5) in the present work. Notations: ¢ T, = 1
nm and 0 7, = 3 nm. Ty = 25 nm for SG devices.
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Fig. 4. Dependence of L.g/A, ratios for SG/DG SOI/GOI
MOSFET on silicon film thickness (7;) for (a) d = 2 nm/dec,
(b) d = 4 nm/dec and (c¢) d = 6 nm/dec. Notations: DG
SOI FET, — — - DG GOI FET, ....... SG SOI FET and ——— SG
GOI MOSFET. Ty, = 25 nm for SG devices. The dashed
rectangle denotes the region where Leg/Aq > 2.

Le/ 21

Fig. 4 shows the dependence of L.g/A; on silicon film
thickness (T;) for various doping gradients and devices.
Largest L.i/A; ratio is obtained at lower d values because
of the greater contribution of spacer regions to the

effective channel length. The lower permittivity of Si
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yields lower natural length scale (1) value as compared
to that achieved with Ge i.e. (A))pg_sor(A1)pe_cor = 0.88
at s/Ly = 0.50 and is independent of d. Similar values (~
0.88) are also observed for SG devices. Since SG/DG
devices should be designed such that L./ A, > 2 to avoid
short channel effects, S/D design with d = 6 nm/dec (S/D
dopant spill into the channel as spacer is not wide
enough) will not be useful in nanoscale devices.

Fig. 5 shows the dependence of L./ A; on s/Lg values
for two different doping gradients and various devices
(SG/DG and SOI/GOI). Wider spacers or larger s/Lg
values result in longer effective channel length values
and lead to higher L.4/A;, values for all devices. SG
underlap devices designed with gradual S/D profiles i.e.
higher d values will exhibit significant SCEs as L.g/ 4, is
lower than 2 even for s/L, ~ 1. DG SOI devices should
be designed with s/L, > 0.4 in order to achieve Lo/ A, =2
at d = 2 nm/dec whereas to attain the same degree
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Fig. 5. Dependence of L.g/A, ratios for SG/DG SOI/GOI
MOSFET on spacer to gate length ratio (s/L,) for (a) d = 2
nm/dec and (b) d = 4 nm/dec. Notations: DG SOI FET, -
- - DG GOI FET, ....... SG SOI FET and ——— SG GOI
MOSFET. Ty, = 25 nm for SG devices.

of suppressed SCEs in DG GOI devices (Leg/Ar = 2), 5/L,
should be maintained around 0.5. Therefore, GOI devices
will require wider spacers in comparison to SOl MOSFETs
for attaining the same degree of short channel immunity.
At higher S/D gradients, DG SOI devices should be
designed such that s/L, > 0.6 whereas GOI based DG
devices should have a minimum spacer width of 0.7L,.
Fig. 6 shows the requirement for selecting silicon film
thickness for various s/L, and d values such that L.s/A; =
2 i.e. devices are designed to be immune from SCEs. As
shown in the figure, DG SOI MOSFETs show greater
flexibility in the choice of T; as compared to SG devices.
For a typical S/D profile with 4 = 2 nm/dec and s/L, =
0.5, DG SOI devices require maximum Ty of ~ 13 nm
whereas DG GOI devices should be designed with
(Ts)max 0of 10 nm to achieve similar levels of short
channel immunity. In case of SG devices, the range of T;
values is limited to 6 and 5 nm in SOI and GOI devices,
respectively. The maximum allowable 7 value reduces
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Fig. 6. Maximum allowable film thickness (Tj)max 85 a
function of spacer to gate length ratio (s/L,) for (a) d = 2
nm/dec and (b) d = 4 nm/dec. Notations: DG SOI FET, -
- - DG GOI FET, ... SG SOI FET and ——— SG GOI
MOSFET. Ti,ox = 10 nm for SG devices.
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if a gradual S/D profile (~ 4 nm/dec) is used instead of a
steeper S/D profile. It is evident from these results that in
order to improve the scalability and short channel
immunity in SG devices, silicon film thickness must be
reduced and/or spacer width be increased (at a constant
d). Reducing film thickness involves the problem of
producing a thin, defect free and uniform mono-cry-
stalline silicon layer (<10 nm), which is a technological
issue. The use of underlap design is beneficial as it
allows the use silicon films > 8 nm in SOI/GOI DG
devices without compromising the electrostatic integrity
of the device.

In order to design devices with suppressed SCEs,
L/ A1 should be greater or equal to 2 [29]. The first step
in selecting the device and S/D profile parameters is the
evaluation of Ly/A;. If this ratio is 2, the device will be
immune from SCEs and underlap channel design should
be avoided as it will add extra series resistance (due to
the contribution of non—overlapped gate-S/D regions)
which will degrade the performance for above threshold
operation. If the term Lg/4; is less than 2, the additional
contribution of S/D regions to achieve L/ A; = 2 should
be computed as @ = 2 — (L,/A;). The minimum spacer
width, ($)min associated with the underlap profile to
achieve immunity from SCEs can be computed as

s (T

A1 in the above equation depends on device geometry
and will be different for SG/DG SOI/GOI devices. This
equation allows for an efficient estimation of the S/D

profile requirements to limit SCEs for a given topology.
As shown in Fig. 7, lower (s)n;, values are required for
thin silicon films and lower S/D doping gradients.
Selecting a device geometry (SG or DG) or even a
technology (SOI or GOI) will only change the value of
© but the variation of (s)n;, with & will remain the same
i.e. (S)min data points lie on the same curve (for a given d
‘value). For example designing DG devices with T,y = 1
nm and 7 = 10 nm results in 4; of 15.5 nm and 20.8 nm
for SOI and GOI technology, respectively. These values
translate into & values of 0.384 and 0.798 which
correspond to (§)min of 9.6 nm (SOI) and 18.2 nm (GOI)
respectively for d = 2 nm/dec. It is advisable to compute
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Fig. 7. Minimum spacer width to achieve immunity form short
channel effects as a function of d and T;.
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Fig. 8. Dependence of Subthreshold slope (S-slope) on doping
gradient for DG SOI and DG GOI devices for (a) s/L, = 0.25
and s/L, = 0.75 and (b) s/Ly = 0.50 and s/L, = 1.0. Parameters:
Tox = 1.3 nm, N, = 10" cm”, 7,;= 10 nm and V4 = 50 mV. The
reference S-slope values for DG SOI devices are taken from [24].

s in a given underlap design instead of d as it is
dependent on the process and quite difficult to change.
Equation (6) provides a simple and effective method of
estimating the minimum spacer width for a given
device/technology and yielding a device design with
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immunity from short channel effects.

By adopting the similar procedure as described in [24,
46-47], the expression of minimum channel potential
(¥,) can be derived i.e. eq. (A3) of [24]. The carrier
density (m.,,) at the position of minimum channel
potential () is given as n, = (%/N,)exp(q ¥u/kT)
where »; is the intrinsic carrier concentration, N, is the
film doping, ¢ is the electron charge, £ is the Boltzmann
constant and 7 is the temperature. Assuming that the
Subthreshold slope (S-slope) is related to carrier
concentration at Xy, (and hence to the ¥) [46-47, 51-
53], S-slope can be obtained as 0V,/Clogly, ~ In(10)
OVy/On(ny,) = In(10) (kT/q) (0 Y’nJans)'l. This expression
for evaluating S-slope has been widely used in several
prior published papers [24, 46-47, 51-55].

The threshold voltage (V1) can be defined as the gate
voltage at which the minimum sheet density of inversion
carriers reaches a value Oy [56] adequate for identifying
the turn-on condition, which can be approximated as

T,

O = |, eXP(Q‘Pm /kT)dy
0

At the position of minimum channel potential, Oy
can be approximated [56] as ‘¥, =(k—TJ[ln(Qi]], with
q n

Om = 5.5 x 10" ecm™? [55]. In terms of the classical

method of determining the threshold voltage ie. by

i si

equating the minimum channel potential, ¥, to x¢;
(where «is a fitting parameter, ¢ is the Fermi potential),
QOrm value reported above corresponds to x = 1.35. The
parameter Ory (or &) relates to the current level used in
experimental characterization of threshold voltage. It
should be noted that « is lower than the classical value of
2 for bulk MOS devices. The use of minimum channel
potential, obtained via the analytical solution of the
Poisson’s equation, to evaluate threshold voltage is a
well defined technique and has been reported in several
published papers [24, 51-57].

The natural length analysis is extended to evaluate the
Subthreshold slope (S-slope) and Drain Induced Barrier
Lowering (DIBL) for DG devices using the expressions
proposed by Kranti ef al., [24]. For a fair comparison
between DG SOI and DG GOI MOSFETs, all device

parameters are kept the same for both types of devices,
except for the Ge intrinsic doping concentration of n;g. =
2 x 10" e¢m™ affecting the built-in potential across the
source/drain-channel junctions and the dielectric
constant &g, = 16z, (g, is the permittivity of free space)
affecting the natural channel length kpg Gor. As shown
in Fig. 8, S/D doping gradient must be maintained below
3 nmv/dec for GOI devices whereas higher d value of 4
nm/dec is required to achieve S-slope lower than 8§80
mV/dec for s/L; = 0.25. An increase in s/Lg to 0.50
relaxes the constraint on d from 3 to 5 for GOI and from
4 to 5 for SOI devices to achieve S-slope of 80 mV/dec.
Wider spacers (s/Ly > 0.5) can achieve lower S-slope
values independent of d. Targeting an S/D process with d
= 3 nm/dec, s/L, = 0.25 can achieve S-slope = 80
mV/dec whereas larger spacers ~ 0.35L, would be more
appropriate for GOI  devices for the same S-slope
values.

Fig. 9 shows the dependence of S-slope on effective
channel length (L.g) for SOI and GOI devices. Underlap
design with gradual d values at narrow spacers achieves
higher S-slope values due to a lower L.y because of
dopant spill into the channel. S/D design with d = 2
nm/dec and s/Lg = 0.25 yields Leg = 24 nm resulting in §-
slope values of 87 mV/dec and 81 mV/dec for GOI and
SOI DG MOSFETs i.e. 6 mV/dec higher S-slope for GOI
devices. For longer channel lengths (~ 40 nm), the
difference between S-slope values for GOI and SOI

90
Ty C) DG GOl
g \ od =2 nm/dec
> 80 ¢d =4 nm/dec
£ Tox = 1.3nNM
8_ Vg =50 mV
o 70 -
o N
) DG SOI

60

15 25 35 45 55

Leff (nm)

Fig. 9. Dependence of Subthreshold slope (S-slope) on
effective channel length (L) for DG SOI and GOI devices.
The maximum S-slope value corresponding to a particular d
value corresponds to s/L; = 0.25 whereas the minimum S-slope
value signifies s/L, = 1.0. The reference S-slope values for DG
SOI devices are taken from [24]. Parameters are same as in Fig. 8.
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Fig. 10. Dependence of Drain Induced Barrier Lowering
(DIBL) on doping gradient for DG SOI and DG GOI devices
for (a) s/Lg = 0.25 and /L, = 0.75 and (b) s/L, = 0.50 and s/Lg
= 1.0. Parameters are same as in fig. 8. The reference DIBL
values for DG SOI devices are taken from [24]. DIBL = |(V}h1-

Vina)/( Vdsl-Vd52)| where Vi, and Vi, are threshold voltages
extracted at drain bias of (Vy;;) 50 mV and (Vy;,)1.0 V.

devices reduces to 2 mV/dec with both exhibiting ideal
values of 60 mV/dec for L.s> 50 nm.

Fig. 10 shows the dependence of DIBL on S/D doping
gradient (d) for SOI and GOI devices. A target DIBL =
100 mV/V for nanoscale devices can be achieved for
very steep S/D gradient (d < 2 nm/dec) in GOI devices
whereas a slightly higher value of d = 3 nm/dec can still
achieve the same DIBL for SOI DG MOSFETs. A wider
spacer of 0.5L, relaxes the constraint on S/D doping
gradient for SOI and GOI devices. DG SOI devices
should be designed with d < 4 nm/dec and 5 nm/dec for
GOI and SOI devices respectively with s/L, = 0.5 to
achieve DIBL of 100 mV/V. Underlap S/D design can be
utilized to limit short channel effects in SOI/GOI devices
and achieve reasonable values of S-slope and DIBL.

II1. CONCLUSIONS

A comprehensive analysis to limit short channel
effects in single and double gate SOI/GOI MOSFETs,
based on the ratio of effective channel length to natural
length, has been presented. Results suggest that GOI
based devices exhibit higher degree of short channel
effects as compared to SOI based MOSFETs. Underlap
channel design defined by spacer width, S/D doping
gradient and lateral straggle offer additional degree of
freedom apart from transistor structural parameters to
design devices with immunity to short channel effects.
Underlap channel design is particularly useful in
suppressing short channel effects in GOI based devices
with silicon films > 8 nm. DG SOI MOSFETs offer
maximum flexibility in selecting silicon film thickness
and lowest spacer width at a given S/D doping gradient
when compared to single gate SOI MOSFETs and GOI
based single/double gate MOSFETs. Reasonable values
of S-slope and DIBL can be achieved in underlap
channel GOI DG devices. Results presented in this work
will be useful in design and optimization of nanoscale
single and double gate SOI/GOI MOSFETs for low
voltage applications.
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