Mechanical and Thermal Behavior of Polyamide-6/Clay Nanocomposite Using Continuum-based Micromechanical Modeling

  • Weon, Jong-Il (Reliability Assessment Center of Chemical Materials, Korea Research Institute of Chemical Technology)
  • Published : 2009.10.25

Abstract

The mechanical and thermal behaviors of polyamide-6/clay nanocomposites were studied using the continuum-based, micromechanical models such as Mori-Tanaka, Halpin-Tsai and shear lag. Mechanic-based model prediction provides a better understanding regarding the dependence of the nanocomposites' reinforcement efficiency on conventional filler structural parameters such as filler aspect ratio ($\alpha$), filler orientation (S), filler weight fraction (${\Psi}_f$), and filler/matrix stiffness ratio ($E_f/E_m$). For an intercalated and exfoliated nanocomposite, an effective, filler-based, micromechanical model that includes effective filler structural parameters, the number of platelets per stack (n) and the silicate inter-layer spacing ($d_{001}$), is proposed to describe the mesoscopic intercalated filler and the nanoscopic exfoliated filler. The proposed model nicely captures the experimental modulus behaviors for both intercalated and exfoliated nanocomposites. In addition, the model prediction of the heat distortion temperature is examined for nanocomposites with different filler aspect ratio. The predicted heat distortion temperature appears to be reasonable compared to the heat distortion temperature obtained by experimental tests. Based on both the experimental results and model prediction, the reinforcement efficiency and heat resistance of the polyamide-6/clay nanocomposites definitely depend on both conventional (${\alpha},\;S,\;{\Psi}_f,\;E_f/E_m$) and effective (n, $d_{001}$) filler structural parameters.

References

  1. J. I. Weon and H. J. Sue, Polymer, 46, 6325 (2005) https://doi.org/10.1016/j.polymer.2005.05.094
  2. H. S. Jin, J. H. Chang, and J. C. Kim, Macromol. Res., 16, 503 (2008) https://doi.org/10.1007/BF03218551
  3. H. J. Sue, K. T. Gam, N. Bestaoui, N. Spurr, and A. Clearfield, Chem. Mater., 16, 242 (2004) https://doi.org/10.1021/cm030441s
  4. T. Y. Hwang, J. W. Lee, S. M. Lee, and G. J. Nam, Macromol. Res., 17, 121 (2009) https://doi.org/10.1007/BF03218665
  5. M. Choi, B. Lim, and J. Jang, Macromol. Res., 16, 200 (2008) https://doi.org/10.1007/BF03218853
  6. P. D. Shepherd, F. J. Golemba, and F. W. Maine, Adv. Chem. Ser., 134, 41 (1974) https://doi.org/10.1021/ba-1974-0134.ch005
  7. A. Okada, Y. Fukushima, M. Kawasumi, S. Inagaki, A. Usuk, S. Sugiyami, T. Kurauchi, and O. Kamigaito, US Patent 4739007 (1988)
  8. M. Kawasumi, M. Kohzaki, Y. Kojima, A. Okada, and O. Kamigaito, US Patent 4810734 (1989)
  9. A. Usuki, Y. Kojima, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1179 (1993)
  10. Y. Wang, L. Zhang, C. Tang, and D. Yu, J. Appl. Polym. Sci., 78, 1878 (2000)
  11. X. Fu and S. Qutubuddin, Polymer, 42, 807 (2001) https://doi.org/10.1016/S0032-3861(00)00385-2
  12. G. M. Kim, D. H. Lee, B. Hoffmann, J. Kressler, and G. St\ddot{o}ppelmann, Polymer, 42, 1095 (2000) https://doi.org/10.1016/S0032-3861(00)00468-7
  13. T. D. Fornes and D. R. Paul, Polymer, 44, 4993 (2003) https://doi.org/10.1016/S0032-3861(03)00471-3
  14. N. Sheng, M. C. Boyce, D. M. Parks, G. C. Rutledge, J. I. Abes, and R. E. Cohen, Polymer, 45, 487 (2004) https://doi.org/10.1016/j.polymer.2003.10.100
  15. J. I. Weon, T. S. Creasy, A. J. Hsieh, and H. J. Sue, Polym. Eng. Sci., 45, 314 (2005) https://doi.org/10.1002/pen.20269
  16. T. S. Creasy and Y. S. Kang, J. Thermo. Comp. Mat., 17, 205 (2004) https://doi.org/10.1177/0892705704035403
  17. J. I. Weon, Z. Y. Xia, and H. J. Sue, J. Polym. Sci. Part B: Polym. Phys., 43, 3555 (2005) https://doi.org/10.1002/polb.20649
  18. T. D. Fornes, P. J. Yoon, H. Keskkula, and D. R. Paul, Polymer, 42, 9929 (2001) https://doi.org/10.1016/S0032-3861(01)00552-3
  19. J. D. Eshelby, Proc. R. Soc. A, 241, 376 (1957) https://doi.org/10.1098/rspa.1957.0133
  20. T. Mori and K. Tanaka, Acta. Metall. Mater., 21, 571 (1973) https://doi.org/10.1016/0001-6160(73)90064-3
  21. J. E. Ashton, J. C. Halpin, and P. H. Petit, Primer on Composite Materials: Analysis, Technomic, Westport, 1969
  22. J. C. Halpin, J. Compos. Mater., 3, 732 (1969)
  23. J. C. Halpin and J. L. Kardos, Polym. Eng. Sci., 16, 344 (1976) https://doi.org/10.1002/pen.760160512
  24. D. Adams and D. Doner, J. Compos. Mater., 1, 152 (1967) https://doi.org/10.1177/002199836700100205
  25. R. Hill, J. Mech. Phys. Solids, 13, 213 (1965) https://doi.org/10.1016/0022-5096(65)90010-4
  26. G. P. Tandon and G. J. Weng, Polym. Compos., 5, 327 (1984) https://doi.org/10.1002/pc.750050413
  27. R. Hill, Proc. Phys. Soc. A, 65, 349 (1952) https://doi.org/10.1088/0370-1298/65/5/307
  28. C. L. Tucker and E. Liang, Compos. Sci. Technol., 59, 655 (1999) https://doi.org/10.1016/S0266-3538(98)00120-1
  29. H. L. Cox, Br. J. Appl. Phys., 3, 72 (1952)
  30. M. van Es, F. Xiqiao, J. van Turnhout, and van der Giessen E, Specialty Polymer Additives: Principles and Applications, S. Al-Malaika and A. W. Golovoy, Eds., Blackwell Science, CA Malden, MA, 2001, chapter 21
  31. D. Hull and T. W. Clyne, An Introduction to Composite Materials, 2nd ed., Cambridge University Press, New York, 1996
  32. S. Xie, S. Zhang, F. Wang, H. Liu, and M. Yang, Polym. Eng. Sci., 45, 1247 (2005) https://doi.org/10.1002/pen.20359
  33. D. R. Paul and C. B. Bucknall, Polymer Blends, Wiley, New York, 2000
  34. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, Wiley, New York, 2000
  35. O. L. Manevitch and G. C. Rutledge, J. Phys. Chem. B, 108, 1428 (2003) https://doi.org/10.1021/jp0302818
  36. T. D. Fornes, Polyamide-layered Silicate Nanocomposites by Melt Processing, PhD Dissertation, University of Texas at Austin (2003)
  37. H. van Olphen, An Introduction to Clay Colloid Chemistry, for Clay Technologists, Geologists, and Soil Scientists, 2nd ed., Wiley, New York, 1977