Two-Pore Domain $K^+$ Channels Expressed in Mammalian Reproductive Cells and Organs

포유동물 생식세포 및 생식기관에서 발현되는 Two-Pore Domain 칼륨 통로

  • Lee, Hyo-Zhin (Departments of Physiology, Biomedical Center (BK21), Gyeongsang National University School of Medicine) ;
  • Han, Jae-Hee (Departments of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine) ;
  • Kang, Da-Won (Departments of Physiology, Institute of Health Sciences, Gyeongsang National University School of Medicine)
  • 이효진 (경상대학교 의학전문대학원 생리학교실.의생명과학사업단(BK21)) ;
  • 한재희 (경상대학교 의학전문대학원 생리학교실.건강과학연구원) ;
  • 강다원 (경상대학교 의학전문대학원 생리학교실.건강과학연구원)
  • Published : 2009.09.30

Abstract

Two-pore domain $K^+(K_{2P})$ channels contribute to setting the resting membrane potential in excitable and nonexcitable cells. However, the cellular or tissue distribution and function of $K_{2P}$ channels expressed in mammalian germ cells and reproductive organs have not yet been reviewed by researchers. In this review, we focus on expression, localization and expected properties of $K_{2P}$ channels in germ cells and reproductive organs. The $K_{2P}$ channels are expressed in human cytotrophoblast cells, myometrium, placental vascular system, uterine smooth muscle, and pregnant term tissue, suggesting that $K_{2P}$ channels might be involved in the processes of pregnance. The $K_{2P}$ channels are also expressed in mouse zygotes, monkey sperm, ovary, testis, germ cells, and embryos of Korean cattle. Interestingly, $K_{2P}$ channels are modulated by changes in temperature and oxygen concentration which play an important role in embryonic development. Also, $K_{2P}$ channels are responsible for $K^+$ efflux during apoptotic volume decreases in mouse zygotes. These expression patterns and properties of the $K_{2P}$ channels in reproductive organs and germ cells are likely to help the understanding of ion channel-related function in reproductive physiology.

Two-pore domain 칼륨($K_{2P}$) 통로는 흥분세포 및 비흥분세포의 안정막 전압을 일정하게 유지하는데 관여한다. 그러나 생식세포 및 생식기관에서 발현되는 $K_{2P}$ 통로의 분포영역 및 그 기능에 대해서는 연구자들에 의해 아직 정리되지 못하였다. 본 종설에서는 $K_{2P}$ 통로의 생식세포 및 생식기관에서 발현, 분포 및 생리학적 의의를 논하였다. $K_{2P}$ 통로는 인간 영양막세포, 자궁근층, 태반혈관계, 자궁평활근조직, 태반융모조직 및 임신자궁조직에서 발현되어 임신에 있어서 관련성을 제시되었다. 또한, $K_{2P}$ 통로는 마우스 전핵배, 원숭이 정자 및 한우의 난소, 정소, 난자, 정자 및 수정란에서 발현 변화를 보였다. 특히, $K_{2P}$ 통로는 체외배양 시 변화되는 온도, 산소분압과 같은 배양조건에 의해 조절되는 특징을 보임으로써 수정 및 배 발달에 영향을 줄 수 있는 인자로 제시되었다. 그리고 $K_{2P}$ 통로는 과산화수소에 의해 유도된 마우스 전핵배의 세포 사멸에 있어서 칼륨 이온의 유출에 관여함이 확인되었다. $K_{2P}$ 통로의 생식세포 및 생식기관 내 발현 형태와 생리학적 특징은 생식생리학에 있어서 이온 통로 관련 기능들을 이해하는데 도움이 될 것이다.

Keywords

References

  1. Bae IH and Park JH. 1987. Studies do the requirements of Ca$^{2+}$ for cell division and Ca$^{2+}$ permeability of plasma membrane of fast dividing mouse embryo cells. Kor. J. Fert. Steril., 14:93-100
  2. Bai X, Bugg GJ, Greenwood SL, Glazier JD, Sibley CP, Baker PN, Taggart MJ and Fyfe GK. 2005b. Expression of TASK and TREK, two-pore domain K$^{+}$ channels, in human myometrium. Reproduction 129(4):525-530 https://doi.org/10.1530/rep.1.00442
  3. Bai X, Greenwood SL, Glazier JD, Baker PN, Sibley CP, Taggart MJ and Fyfe GK. 2005a. Localization of TASK and TREK, two-pore domain K$^{+}$ channels, in human cytotrophoblast cells. J. Soc. Gynecol. Investig. 12(2):77-83 https://doi.org/10.1016/j.jsgi.2004.08.004
  4. Bai X, Lacey HA, Greenwood SL, Baker PN, Turner MA, Sibley CP and Fyfe GK. 2006. TASK channel expression in human placenta and cytotrophoblast cells. J. Soc. Gynecol. Investig. 13(1):30-39 https://doi.org/10.1016/j.jsgi.2005.10.005
  5. Bang H, Kim Y, and Kim D. 2000. TREK-2, a new member of the mechanosensitive tandem-pore K$^{+}$ channel family. J. Biol. Chem. 275(23):17412-17419 https://doi.org/10.1074/jbc.M000445200
  6. Barcroft LC, Offenberg H, Thomsen P and Watson AJ. 2003. Aquaporin proteins in murine trophectoderm mediate transepithelial water movements during cavitation. Dev. Biol. 256(2):342-354 https://doi.org/10.1016/S0012-1606(02)00127-6
  7. Besana A, Robinson RB and Feinmark SJ. 2005. Lipids and two-pore domain K(+) channels in excitable cells. Prostaglandins Other Lipid Mediat. 77(1-4):103-110 https://doi.org/10.1016/j.prostaglandins.2004.10.005
  8. Boni R, Gualtieri R, Talevi R and Tosti E. 2007. Calcium and other ion dynamics during gamete maturation and fertilization. Theriogenology 68(1):S156-164 https://doi.org/10.1016/j.theriogenology.2007.05.048
  9. Chow GE, Muller CH, Curnow EC and Hayes ES. 2007. Expression of two-pore domain potassium channels in nonhuman primate sperm. Fertil. Steril. 87(2):397-404 https://doi.org/10.1016/j.fertnstert.2006.06.051
  10. Cuomo A, Silvestre F, De Santis R and Tosti E. 2006. $Ca^{2+}$ and $Na^{+}$ current patterns during oocyte maturation, fertilization, and early developmental stages of Ciona intestinalis. Mol. Reprod. Dev. 73(4):501-511 https://doi.org/10.1002/mrd.20404
  11. Dalvit GC, Cetica PD, Pintos LN and Beconi MT. 2005. Reactive oxygen species in bovine embryo in vitro production. Biocell. 29(2):209-212
  12. Darszon A, Labarca P, Nishigaki T and Espinosa F. 1999. Ion channels in sperm physiology. Physiol. Rev. 79(2):481-510 https://doi.org/10.1152/physrev.1999.79.2.481
  13. Darszon A, Trevino CL, Wood C, Galindo B, Rodriguez-Miranda E, Acevedo H, Hernandez-Gonzalez EO, Beltran C, Martinez-Lopez P and Nishigaki T. 2007. Ion channels in sperm motility and capacitation. Soc. Reprod. Fertil. Suppl. 65:229-244
  14. Day ML, Pickering SJ, Johnson MH and Cook DI. 1993. Cellcycle control of a large-conductance K$^{+}$ channel in mouse early embryos. Nature 365(6446):560-562 https://doi.org/10.1038/365560a0
  15. Day ML. Johnson MH and Cook DI. 1998. A cytoplasmic cell cycle controls the activity of a K$^{+}$ channel in preimplantation mouse embryos. EMBO. J. 17:1952-1960 https://doi.org/10.1093/emboj/17.7.1952
  16. de Castro EPLA and Hansen PJ. 2007. Interactions between oxygen tension and glucose concentration that modulate actions of heat shock on bovine oocytes during in vitro maturation. Theriogenology 68(5):763-770 https://doi.org/10.1016/j.theriogenology.2007.06.005
  17. Duprat F, Lesage F, Fink M, Reyes R, Heurteaux C and Lazdunski M. 1997. TASK, a human background K$^{+}$ channel to sense external pH variations near physiological pH. EMBO. J. 16(17):5464-5471 https://doi.org/10.1093/emboj/16.17.5464
  18. Everill B and Kocsis JD. 1999. Reduction in potassium currents in identified cutaneous afferent dorsal root ganglion neurons after axotomy. J. Neurophysiol. 82(2):700-708 https://doi.org/10.1152/jn.1999.82.2.700
  19. Girard C, Duprat F, Terrenoire C, Tinel N, Fosset M, Romey G, Lazdunski M and Lesage F. 2001. Genomic and functional characteristics of novel human pancreatic 2P domain K$^{+}$ channels. Biochem. Biophys. Res. Commun. 282(1):249-256 https://doi.org/10.1006/bbrc.2001.4562
  20. Goldstein SA, Bockenhauer D, O'Kelly I and Zilberberg N. 2001. Potassium leak charmels and the KCNK family of twoP-domain subunits. Nat. Rev. Neurosci. 2(3):175-184 https://doi.org/10.1038/35058574
  21. Homa ST, Carroll J and Swann K. 1993. The role of calcium in mammalian oocyte maturation and egg activation. Hum. Reprod. 8:1274-1281 https://doi.org/10.1093/oxfordjournals.humrep.a138240
  22. Hosey MM, Chang FC, O'Callahan CM and Ptasienski J. 1989. L-type calcium channels in cardiac and skeletal muscle. Ann. N. Y. Acad. Sci. 56:27-38
  23. Hur CG, Choe C, Kim GT, Cho SK, Park JY, Hong SG, Han J and Gang D. 2009. Expression and localization of twopore domain K$^{+}$ channels in bovine germ cells. Society for Reproduction and Fertility. 1470-162
  24. Jaffe LF. 1983. Sources of calcium in egg activation: A review and hypothesis. Dev. Biol. 99:265-276 https://doi.org/10.1016/0012-1606(83)90276-2
  25. Kang D and Kim D. 2006a. TREK-2 (K$_{2P}$10.1) and TRESK (KTEX>$_{2P}$18.1) are major background K$^{+}$ channels in dorsal root ganglion neurons. Am. J. Physiol. Cell. Physiol. 291(1):C138-146 https://doi.org/10.1152/ajpcell.00629.2005
  26. Kang D, Choe C and Kim D. 2005. Thermosensitivity of the two-pore domain K$^{+}$ channels TREK-2 and TRAAK. J. Physiol. 564(Pt 1):103-116 https://doi.org/10.1113/jphysiol.2004.081059
  27. Kang D, Han J and Kim D. 2006b. Mechanism of inhibition of TREK-2 (K$_{2P}$10.1) by the Gq-coupled M3 muscarinic receptor. Am. J. Physiol. Cell Physiol. 291(4):C649-656 https://doi.org/10.1152/ajpcell.00047.2006
  28. Kang D, Kim ES, Yang HY, Choe CY and Han J. 2007a. Expression of two-pore domain $K^{+}$ channels in endometrial cells of Korean cattle. J. Emb. Trans. 22(3):149-154 https://doi.org/10.1530/REP-08-0035
  29. Kang D, Kim SH, Hwang EM, Kwon OS, Yang HY, Kim ES, Choi TH, Park N, Hong SG and Han J. 2007b. Expression of thermosensitive two-pore domain K$^{+}$ channels in human keratinocytes cell line HaCaT cells. Exp. Dermatol. 16(12):1016-1022 https://doi.org/10.1111/j.1600-0625.2007.00626.x
  30. Kang D, Mariash E and Kim D. 2004. Functional expression of TRESK-2, a new member of the tandem-pore K$^{+}$ channel family. J. Biol. Chem. 279(27):28063-28070 https://doi.org/10.1074/jbc.M402940200
  31. Kim D. 2003. Fatty acid-sensitive two-pore domain K$^{+}$ channels. Trends Pharmacol. Sci. 24(12):648-654 https://doi.org/10.1016/j.tips.2003.10.008
  32. Kim D. 2005. Physiology and pharmacology of two-pore domain potassium channels. Curr. Pharm. Des. 11(21):2717-2736 https://doi.org/10.2174/1381612054546824
  33. Kim Y, Bang H, and Kim D. 2000. TASK-3, a new member of the tandem pore K$^{+}$ channel family. J. Biol. Chem. 275 (13):9340-9347 https://doi.org/10.1074/jbc.275.13.9340
  34. Kim Y, Lee SH and Ho WK. 2007. Hydrogen peroxide selectively increases TREK-2 currents via myosin light chain kinases. Front. Biosci. 12:1642-1650 https://doi.org/10.2741/2176
  35. Koh SD, Monaghan K, Sergeant GP, Ro S, Walker RL, Sanders KM and Horowitz B. 2001. TREK-1 regulation by nitric oxide and cGMP-dependent protein kinase. An essential role in smooth muscle inhibitory neurotransmission. J. Biol. Chem. 276(47):44338-44346 https://doi.org/10.1074/jbc.M108125200
  36. Kolajova M, Hammer MA, Collins JL and Baltz JM. 2001. Developmentally regulated cell cycle dependence of swellingactivated anion channel activity in the mouse embryo. Development. 128(18):3427-3434
  37. Lesage F and Lazdunski M. 2000. Molecular and functional properties of two-pare-domain potassium channels. Am. J. Physiol. Renal. Physiol. 2000. 279(5):F793-801
  38. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G and Barhanin J. 1996a. A pH-sensitive yeast outward rectifier K$^{+}$ channel with two pore domains and novel gating properties. J. Biol, Chem. 271(8):4183-4187 https://doi.org/10.1074/jbc.271.8.4183
  39. Lesage F, Guillemare E, Fink M, Duprat F, Lazdunski M, Romey G, and Barhanin J. 1996b. TWIK-l, a ubiquitous human weakly inward rectifying K$^{+}$ channel with a novel structure. EMBO J. 15(5):1004-1011
  40. Lesage F, Terrenoire C, Romey G, and Lazdunski M. 2000. Human TREK2, a 2P domain mechano-sensitive K$^{+}$ channel with multiple regulations by polyunsaturated fatty acids, Iysophospholipids, and Gs, Gi, and Gq protein-coupled receptors. J. Biol. Chem. 275(37):28398-28405 https://doi.org/10.1074/jbc.M002822200
  41. Mahony MC and Gwathmey T. 1999. Protein tyrosine phosphorylation during hyperactivated motility of cynomolgus monkey (Macaca fascicularis) spermatozoa. Biol. Reprod. 60(5): 1239-1243 https://doi.org/10.1095/biolreprod60.5.1239
  42. Maingret F, Lauritzen I, Patel AJ, Heurteaux C, Reyes R, Lesage F, Lazdunski M and Honore E. 2000. TREK-1 is a heat-activated background K$^{+}$ channel. Embo. J. 19(11):2483-2491 https://doi.org/10.1093/emboj/19.11.2483
  43. Medhurst AD, Rennie G, Chapman CG, Meadows H, Duckworth MD, Kelsell RE, Gloger II, and Panglos MN. 2001. Distribution analysis of human two pore domain potassium channels in tissues of the central nervous system and periphery. Molecular Brain Research. 86:101-114 https://doi.org/10.1016/S0169-328X(00)00263-1
  44. Mitani S. 1985. The reduction of calcium current associated with early differentiation of the murine embryo. J. Physiol. 363(1):71-86 https://doi.org/10.1113/jphysiol.1985.sp015696
  45. Miyazaki Sand Igusa Y. 1981. Fertilization potential in golden hamster eggs consists of recurring hyperpolarizations. Nature. 290(5808):702-704 https://doi.org/10.1038/290702a0
  46. Murbartian J, Lei Q, Sando JJ and Bayliss DA. 2005. Sequential phosphorylation mediates receptor- and kinase-induced inhibition of TREK-1 background potassium channels. J. Biol. Chem. 280(34):30175-30184 https://doi.org/10.1074/jbc.M503862200
  47. Nagai T, Funahashi H, Yoshioka K and Kikuchi K. 2006. Up date of in vitro production of porcine embryos. Front. Biosci. 11:2565-2573 https://doi.org/10.2741/1991
  48. Niemeyer MI, Cid LP, Barros LF and Sepulveda FV. 2001. Modulation of the two-pore domain acid-sensitive K$^{+}$ channel TASK-2(KCNK5) by changes in cell volume. J. Biol. Chem. 276(46):43166-43174 https://doi.org/10.1074/jbc.M107192200
  49. Okamoto H, Takahashi K and Yamashita N. 1977. Ionic currents through the membrane of the mammalian oocyte and their comparison with those in the tunicate and sea urchin. J. Physiol. 267(2):465-495 https://doi.org/10.1113/jphysiol.1977.sp011822
  50. Rajan S, Wischmeyer E, Karschin C, Preisig-Miiller R, Grzeschik KH, Daut J, Karschin A and Derst C. 2001. THIK-1 and THIK-2, a novel subfamily of tandem pore domain K$^{+}$ channels. J. Biol. Chem. 276(10):7302-7311 https://doi.org/10.1074/jbc.M008985200
  51. Raymond A. Chavez, Andrew T. Gray, Byron B. Zhao, Christoph H. Kindler, Matthew J. Mazurek, Yash Mehta, John R. Forsayeth, and C Spencer Yost. 1999. TWIK-2, a new weak inward rectifying member of the tandem pore domain potassium channel family. J. Biol. Chem. 274(12):7887-7892 https://doi.org/10.1074/jbc.274.12.7887
  52. Reyes R, Duprat F, Lesage F, Fink M, Salinas M, Farman N, and Lazdunski M. 1998. Cloning and expression of a novel pH-sensitive two pore domain K$^{+}$ channel from human kidney. J. Biol. Chem. 273(47):30863-30869 https://doi.org/10.1074/jbc.273.47.30863
  53. Sanders KM and Koh SD. 2006. Two-pore-domain potassium channels in smooth muscles:new components of myogenic regulation. J. Physiol. 570(Pt 1):37-43 https://doi.org/10.1113/jphysiol.2005.098897
  54. Sano Y, Inamura K, Miyake A, Mochizuki S, Kitada C, Yokoi H, Nozawa K, Okada H, Matsushime Hand Furuichi K. 2003. A novel two-pore domain K$^{+}$channel, TRESK, is localized in the spinal cord. J. Biol. Chem. 278(30):27406-27412 https://doi.org/10.1074/jbc.M206810200
  55. ugiyama S, McGowan M, Phillips N, Kafi M and Young M. 2007. Effects of increased ambient temperature during IVM and/or IVF on the in vitro development of bovine zygotes. Reprod. Domest. Anim. 42(3):271-274 https://doi.org/10.1111/j.1439-0531.2006.00776.x
  56. Talley EM, Sirois JE, Lei Q and Bayliss DA. 2003. Two-poreDomain (KCNK) potassium channels: dynamic roles in neuronal function. Neuroscientist. 9(1):46-56 https://doi.org/10.1177/1073858402239590
  57. Tichenor JN, Hansen ET and Buxton IL. 2005. Expression of stretch-activated potassium channels in human myometrium. Proc. West. Pharmacol. Soc. 48:44-48
  58. Tosti E and Boni R. 2004. Electrical events during gamete maturation and fertilization in animals and humans. Hum. Reprod. Update. 10(1):53-65 https://doi.org/10.1093/humupd/dmh006
  59. Travis AJ, Jorgez CJ, Merdiushev T, Jones BH, Dess DM, Diaz-Cueto L, Storey BT, Kopf GS and Moss SB. 2001. Functional relationships between capacitation-dependent cell signaling and compartmentalized metabolic pathways in murine spermatozoa. J. Biol. Chem. 276(10):7630-7636 https://doi.org/10.1074/jbc.M006217200
  60. Trimarchi JR, Uu L, Smith PJ and Keefe DL. 2002. Apoptosis recruits two-pore domain potassium channels used for homeostatic volume regulation. Am. J. Physiol. Cell Physiol. 282:C588-594 https://doi.org/10.1152/ajpcell.00365.2001
  61. Turner RM. 2003. Tales from the tail: what do we really know about sperm motility? J. Androl. 24(6):790-803 https://doi.org/10.1002/j.1939-4640.2003.tb03123.x
  62. Winston NJ, Johnson MH, McConnell JM, Cook DI and Day ML. 2004. Expression and role of the ether-a-go-go-related (MERG1A) potassium-channel protein during preimplantation mouse development. Biol. Reprod. 70(4):1070-1079 https://doi.org/10.1095/biolreprod.103.020917
  63. Yang EK, Takimoto K, Hayashi Y, de Groat WC and Yoshimura N. 2004. Altered expression of potassium channel subunit mRNA and alpha-dendrotoxin sensitivity of potassium currents in rat dorsal root ganglion neurons after axotomy. Neuroscience. 123(4):867-874 https://doi.org/10.1016/j.neuroscience.2003.11.014
  64. Yeung CH and Cooper TG 2008. Potassium channels involved in human sperm volume regulation - quantitative studies at the protein and mRNA levels. Mol. Reprod. Dev. 75:659-668 https://doi.org/10.1002/mrd.20812