Underfill Flow Characteristics for Flip-Chip Packaging

플립칩 패키징 언더필 유동특성에 관한 연구

  • Song, Yong (School of Mechanical Engineering, Chung-Ang University) ;
  • Lee, Sun-Beung (School of Mechanical Engineering, Chung-Ang University) ;
  • Jeon, Sung-Ho (School of Mechanical Engineering, Chung-Ang University) ;
  • Yim, Byung-Seung (School of Mechanical Engineering, Chung-Ang University) ;
  • Chung, Hyun-Seok (School of Mechanical Engineering, Chung-Ang University) ;
  • Kim, Jong-Min (School of Mechanical Engineering, Chung-Ang University)
  • 송용 (중앙대학교 기계공학부) ;
  • 이선병 (중앙대학교 기계공학부) ;
  • 전성호 (중앙대학교 기계공학부) ;
  • 임병승 (중앙대학교 기계공학부) ;
  • 정현석 (중앙대학교 기계공학부) ;
  • 김종민 (중앙대학교 기계공학부)
  • Published : 2009.09.30

Abstract

In this paper, the flow characteristics of underfill material driven by capillary action between flip-chip and substrate were investigated. Also, the effects of viscosity level and dispensing point of underfill on flow characteristics were investigated. Flip chip package size was $5mm{\times}5mm{\times}0.65^tmm$, the diameter of solder bump was 100 ${\mu}m$, and the pitch was 150 ${\mu}m$. It was full grid area-array type with 1024 I/Os. The glass substrate was used and the gap between the chip and substrate was 50 ${\mu}m$. For the experimental study, three different underfills with different viscous properties($2000{\sim}3700$ cps), and two different types of dispensing methods(center dot and edge dot) were used. The flow characteristics and filling time of underfill were investigated by using CCD camera. The results show that the edge flow was faster than center flow due to the edge effect, which was caused by the resistance of solder bumps. In case of edge dot dispensing type, the filling time was faster due to the large edge effect, compared to center dot dispensing type. Also, it was found that the underfill flow was faster and the filling time decreased as the viscosity level of underfill was decreased.

본 연구에서는 언더필 공정에서 플립칩과 기판사이의 모세관 작용에 의한 언더필 유동 경향에 대해 살펴보고, 언더필의 점도와 토출 위치에 따른 언더필 유동특성에 대해 살펴보았다. 플립칩의 사이즈는 $5mm{\times}5mm{\times}0.65^tmm$이며, 솔더 범프의 직경은 100 ${\mu}m$, 피치(pitch)간격은 150 ${\mu}m$, 총 1024 I/O(Input/Output)단자의 Full Grid 형태의 플립칩을 사용하였다. 기판으로 투명한 글래스 기판을 사용하였으며 플립칩 패키징의 접합 높이는 50 ${\mu}m$으로 제작하였다. 언더필의 점도 및 토출 위치가 유동특성에 미치는 영향을 살펴보기 위해, 세 종류의 점도 특성($2000{\sim}3700$cps)을 가지는 언더필과 토출 위치를 모서리와 중앙부위로 설정하였다. 언더필의 유동특성 및 충진 시간(filling time)은 CCD카메라를 사용하여 관찰하였다. 실험 결과, 언더필은 솔더 범프에 의한 유동 저항으로 인하여 가장자리 효과(edge effect)가 나타나 칩의 양쪽 측면 유동이 더 빠르게 진전되는 것을 알 수 있었다. 또한, 중앙 부위에서 토출한 경우에 비해 모서리에서 토출한 경우가, 가장자리 효과가 크고 이로 인해 칩의 양쪽 측면 유동이 더 빠르게 진전되어 충진 시간이 더 빠르다는 것을 알 수 있었다. 또한, 점도가 낮을수록, 언더필 유동이 빠르고 가장자리 효과가 크게 나타나며 전체 충진 시간이 감소됨을 알 수 있었다.

Keywords

References

  1. I. Anjoh, A. Nishimura and S. Eguchi, "Advanced IC Package for the Future Applications", IEEE Trans. Electron. Devices, 45(3), 743(1998) https://doi.org/10.1109/16.661237
  2. C. P. Wong and M. M. Wong, "Recent Advances in Plastic Packaging of Flip-Chip and Multichip Modules (MCM) of Microelectronics", IEEE Trans. Comp. Packag. Technol., 22(1), 21(1999) https://doi.org/10.1109/6144.759349
  3. L. S. Goldmann, "Geometric Optimization of Controlled Collapse Interconnections", IBM J. Res. Develop., 13, 210(1969)
  4. D. F. Baldwin, "Fundamentals of IC Assembly", in Fundamentals of Microsystems Packaging, R. R. Tummala, Eds., pp.342-397, McGraw-Hill, New-York(2001)
  5. R. W. Johnson, "Flip Chip Assembly and Underfilling", in Area Array Packaging Processes, K. Gilleo, Eds., pp.99-142, McGraw-Hill, New York(2004)
  6. D. Suryanarayana, R. Hsiao, T. P. Gall and J. J. McCreary, "Enhancement of Flip-Chip Fatigue Life by Encapsulation", IEEE Trans. Compon. Hybrids Manuf. Technol., 14(1), 218(1991) https://doi.org/10.1109/33.76536
  7. Z. Zhang and C. P. Wong, "Recent Advances in Flip-Chip Underfill: Materials, Process, and Reliability", IEEE Trans. Adv. Packag., 27(3), 515(2004) https://doi.org/10.1109/TADVP.2004.831870
  8. J. W. Wan, W. J. Zhang and D.J. Bergstrom, "Experimental Verification of Models for Underfill Flow Driven by Capillary Forces in Flip-Chip Packaging", Microelec. Relia., 48, 425(2008) https://doi.org/10.1016/j.microrel.2007.06.006
  9. S. Lee, M. J. Yim, R. N. Master, C. P. Wong and D. F. Baldwin, "Void Formation Study of Flip Chip in Package Using No-Flow Underfill", 31(4), 297(2008) https://doi.org/10.1109/TEPM.2008.2002951
  10. T. Hashimoto, T. Shin-ichiro, K. Morinishi and N. Satofuka, "Numerical Simulation of Conventional Capillary Flow and No-Flow Underfill in Flip-Chip Packaging", Computers & Fluids, 37, 520(2008) https://doi.org/10.1016/j.compfluid.2007.07.007
  11. W.-B. Young, "Anisotropic Behavior of the Capillary Action in Flip Chip Underfill", Microelectron. J., 34, 1031(2003) https://doi.org/10.1016/j.mejo.2003.09.001
  12. Y. K. Shen, C. M. Ju, Y. J. Shie and H. W. Chien, "Resin Flow Characteristics of Underfill Process on Flip Chip Encapsulation", Int. Comm. Heat Mass Transfer, 31(8), 1075(2004) https://doi.org/10.1016/j.icheatmasstransfer.2004.08.005
  13. P. S. Ho, Z. P. Xiong and K. H. Chua, "Study on Factors Affecting Underfill Flow and Underfill Voids in a Lage-die Flip Chip Ball Grid Array (FCBGA) Package", 2007 9th Electron. Packag. Technol. Conf., 640(2007)
  14. E. W. Washburn, "The Dynamics of Capillary Flow", Phys. Rev., 17(3), 273(1921) https://doi.org/10.1103/PhysRev.17.273