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Abstract

Let {X,,n > 1} be a negatively associated sequence of identically distributed random variables with mean
zeros and positive finite variances. Set S, = Y%, X;. Suppose that 0 < o> = EX? +2 32, Cov(Xy, X;) < co. We
prove that, if EX2(log" |X;|)° < oo for any 0 < § < 1, then

26+2
lim & Zaog") ES21(S,] 2 eo ynlogn) = EW'

0
<l n=2

where N is the standard normal random variable. We also prove that if S, is replaced by M,, = max <, [S«, then
the precise rate still holds. Some results in Fu and Zhang (2007) are improved to the complete moment case.

Keywords: Precise rates, complete moment convergence, negatively associated, law of the loga-
rithm.

1. Introduction

A finite sequence of random variables {X;, 1 < i < n} is said to be negatively associated(NA), if for
every disjoint subsets A and B of {1,2,...,n}, we have Cov(f(X;;i € A), g(X;; j € B)) <0, whenever
f on R* and g on R® are coordinatewise nondecreasing functions and the covariance exists. An infinite
sequence of random variables is NA if every finite subsequence is NA.

The notion of NA was introduced by Alam and Saxena (1981). Joag-Dev and Proschan (1983)
showed that many well known multivariate distributions possess the NA property. Some examples
include: (a) the multinomial, (b) the convolution of unlike multinomials, (c) the multivariate hyper-
geometric distribution, (d) the Dirichlet, (e¢) the Dirichlet compound multinomial, (f) the negatively
correlated normal distribution, (g) the permutation distribution, (h) the random sampling without re-
placement, and (i) the joint distribution of ranks. Because of its wide applications in multivariate
statistical analysis and system reliability, the notion of NA has received considerable attention re-
cently. We refer to Joag-Dev and Proschan (1983) for fundamental properties, Shao and Su (1999) for
the law of the iterated logarithm, Shao (2000) for moment inequalities and the maximal inequalities
of the partial sum, Liang (2000) for complete convergence, Kim et al. (2001) for the estimation of
empirical distribution, Li and Zhang (2004) for complete moment convergence, Fu and Zhang (2007)
for the precise rates of in the law of the logarithm and Ko (2009) for central limit theorem of a linear
process based on the negatively associated process in a Hilbert space. Set S, = X7, X; and denote
logx = In(x Vv e). When {X,, n > 1} is a sequence of i.i.d. random variables Liu and Lin (2006)
proved as follows: Let {X,,, n > 1} be a sequence of i.i.d. random variables. Suppose that

EX, =0, 0<EX}=¢? and EX?(log" |X|)’ < oo, 1.1
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for0 <6 < 1. Then

.28 o (logn)®™! 2 _ o 2 26+2
lime Z; = —ESI(1S) 2 e nlogn) = ——EINP*2, 12
where N is the standard normal random variable.
Conversely, if (1.2) is true, then (1.1) holds. Let
|[EXY - EXEY)

p(n) = sup sup Sup e,
k21 Xelo(F7) veLy#y,) V Var(X)Var(Y)

ktni

where
Fr=cXpyl<i<n) and ¥, =cXiizn).

Then the sequence {X,,, n = 1} is said to be p-mixing, if p(n) — 0 asn — oo (see e.g. Peligrad, 1987).

Zhao (2008) proved that (1.2) is true for p-mixing sequences under appropriate conditions as
follows: Let {X,,, n > 1} be a strictly stationary sequence of p-mixing random variables with EX; = 0
and EX? < oo, Suppose that

n—oo RN

. ES? o 2
lim —" = g2 > 0, qu@") < oo, (1.3)
n=1

for g > 26 + 2 and EX?(log" |X1])° < oo for any 0 < 6 < 1. Then

o0 5-1 26+2
lim €2 Z S%Eﬁl(lé‘n} > ernlog n) = EN . 1.4)

€l0 p )

Furthermore, Zhao (2008) proved that if S, is replaced by M,, = maX <<y S| then the precise rate
still holds as follows: Let {X,,n < 1} be a strictly stationary sequence of p-mixing random variables
satisfying above conditions. Then,

ad G-1 26+2 X 1w
lime? ° @niz)—EMfl(}Mnl > e yJnlogn) = 2EIN] > ) (15)
n=2

€l0 ) L (2n+ 1y26+2°

The purpose of this paper is to show that, for negatively associated random variables (1.4} and (1.5)
still hold under appropriate conditions.

2. Preliminaries

We introduce some preliminary results which are needed in proving the main results.

Lemma 1. (Newman, 1984) Assume that {X,, n > 1} is a strictly stationary sequence of negatively
associated random variables with EX; = 0 and EX% <00 If0< o= EXI2 +2 3.2, Cov(X1, X;) < oo,

then
S n

H

BNO, D) as n— oo, @.1)

where — indicates convergence in distribution, N a standard normal distribution.
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Lemma 2. (Shao, 2000) Let {X,,, n = 1} be a strictly stationary sequence of negatively associated
random variables with EXy = 0 and EX? < oo. If 0 < 0% = EX? + 232, Cow(X},X;) < oo, then
W, = W, where W is a standard Wiener measure, W,(f) = S/ Vn,0 < 1 < 1, and “=" means
weak convergence in D[0, 1] with Skorohod topology. In particular,

Z sup [W(), 2.2

o \f;l O=r<t

where M, = maXi<<, [Skl, 7> 1 and {(W(6);t > 0} is a standard Wiener process.

Lemma 3. (Shao, 2000) Ler {Y;, 1 < i < n} be a sequence of NA random variables with mean zeros

and finite variances. Denote §; = Zf;l Y;,1<k<n B,=Y!,E }’[2. Then, for any u > 0, v > 0.
w B.__\® 23
P >ul<2 > _— _ . )
(&lzf‘s’i]s"l ‘”)‘ P(@glm —v)+4eXp( 8Bﬂ)+4{4(uv+B,,)} @3

Proposition 1. (Zhao, 2008) Suppose that N is a standard normal random variable. Then for any
O0<é<1,

Gl 5 2542
lim €20+2 Z; (1"%)—13(11\4 > e+/logn) = EgNi — 2.4
Proof: For the proof see Theorem 1.3 in Huang and Zang (2005). O
Proposition 2. (Zhao, 2008) Suppose that N is a standard normal random variable. Then for any
O<ox b it logn 51 00 x EIN|25+2
131%18‘5; (—*‘%f nbgnzxp(uvt > ﬁ) = 565D 2.5)
Proof: See the proof of Proposition 5.1 in Liu and Lin (2006). O

The following result is similar to one of Proposition 3.2 in Fu and Zhang (2007).

Proposition 3. Let {X,;n > 1} be a negatively associated sequence of identically distributed ran-
dom variables with EX; = 0 and EX? < oo. Suppose that 0 < 0% = EX? + 232, Cov(X;, X)) = 1,
and EX*(log" |X,|)° < o for any 0 < 6 < 1. Then

leiﬂ)l 9+ i @%@ lP (ISHI > eynlog n) -P (IN} > e+/log n)‘ =0. 2.6)
n=2

Proof: Using the standard method, set H(e) = [exp(M/€*)], where M > 4, 0 < € < 1/4. In fact, we
get

oo

z:; (lo;in)ﬁ IP (ISnl 5 EW) - P(INI > e\/logn)‘
3 ___(loi")6 [P(1541 2 € ynogn) - P (NI > € yiogn)

Il

nsH(e)
+ Z —(loin)" IP(iS,.I > eynlogn) - P(IN| = EM)I
#>H(e)

I+ 11 2.7
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By Lemma 3.4 in Fu and Zhang (2007) we have

lim €#+?1 = 0. (2.8)
€l0
Obviously, we have, for the second part /1,

1< Z '(IOng)&P(INIZe\/IognH Z @P(ISnIZG\/nlogn)

n>H(e) n>H(e)
=HI+1V. 2.9

Notice that H(e) — 1 > VH(e) for M > 4 and O < € < 1/4, an easy calculation leads to

+2 +2 (log n)6
I < ) ~ P(IN| 2 €+/logn)

n>H(e)

<C YHIP(IN| > y)dy >0 as M — oo, (2.10)

uniformly with respectto 0 < € < 1/4.
For IV, by Lemma 3 we have

L L log n)°
lim lim ¥4V < 542 (—( > el )=o. 2.11
i 1V < Jim U7 0 P {max il > e alogn 1D

(See Lemma 3.7 in Fu and Zhang (2007).)
From (2.7)—(2.11), (2.6) follows. O

3. Results

Proposition 4. Set H(e) = [exp(M/€®)] and let {X,,n > 1} be a sequence of identically distributed
NA random variables. If EX2(log" |X;)° < o for any 0 < & < 1. Then we obtain

-1
imer 3 LogWT 0. @31
€l0 nSHe) n

f 2xP(S 1| 2 x)dx - f 2xP (INI > i)dx
ey/nlogn eynlogn \/ﬁ

Proof: Denote A, = sup, |P(IS .| > vnx) — P(IN| > x)|. Assume that x = (y + €) y/nlog n. By integral
formula and transformation, it is enough to show that
Z n2(logn)’!

2P (S| = %) dx — f 2xP (lNI > ~x—)dx
n<H(e) f\/nlogn eynlogn ‘[ﬁ
<C Y n\logny f 25+ € ’P (1S4l = &+ © Ynlogn) PN 2 ¢ + €) \/logn)|dy

n<H(e) 0
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<c Y n'og n)s{ j: y 2y + OP{INI 2 (y + &) yiogn) dy

n<H(e)

‘7"

ognAs N
+f1/ " 2+ 0P lISal 2 0+ o oz} - P{INI = (5 + € Viog|dy
0

+_[17\/10T 12(y+E)P{'SnIZ(y+E)\/n_IO-—g—ﬁ}dy]

nA,?

= C (logn)o

n<H(e)

(Ag + Az + Asz). 3.2

The estimates of A; and A; are similar to those of Proposition 5.2 in Liu and Lin (2006), so we omit

them. It remains to estimate Aj, taking 6 = ,{1/ EX?2 u=(y+e)ynlogn, v=a(y+e)ynlognand
a = 1/{12(6 + 2)} in Lemma 2.4, which yields

Z nYlogn)’As < C Z (log n)° f = LAy + OPXi] > aiy + € ynlogn}dy

n<H(e) n<H(e) 1/ ylogna
Py + €)*logn
+C ), ”‘l(lOgn)‘fr 18(y+6)eXp{~—(y—§)—g—}dy
n<H(e) 1/ yflognat

L ) n/6* =
+C Z n~"(logn) f‘/@fﬁ 8(y+e){4a(y+6)2nlogn+”/92} »

n<H{e)
= Ag+As + Ag. (33)
Note that {log H(e)}® = M®/e® and EX?I(X;] > Yn) — O asn — co. By Toeplitz’s lemma, it follows
that

PAy < ¥ Z C(logn)’sE{f Ay + e)I(‘Xd Vnlogn :_>y+e)}dy

ks
n<H(e) log nA, a

EIX\PI(X1] > Vi) (logn)™!

<Ce®
ns%;e) a’n
EIXiP1(1X)| = vn)(logny’!
SCM6(<1ogzlf<e))5) > — ( e ) 20 aselld G

n<H(e}
Observe that exp(—62/8AL/%) — 0 as n — 0. Using Toeplitz’s lemma again, we have

2
A5 < ¥ Z Cn'(log n)*! (%%)exp(—g—]

ngH(e) SA}I
exp (— —92,—) (logny’~!
847
n

1

TosHEF -0 as €l0. (3.5

P
n<He)
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Observe that A®*Y2 - 0 asn — oo. Using Toeplitz’s lemma again, we have

00 2 —(6+2)
EAs<C Y n\(logn)? 8(y + e){w} dy

HSH(E) 1/ VlognA,,z 3(6 + 2)
g T2 -(6+2)

<e¥C n(lo n)‘f{ } xfm 83+ )|+ elogn dy

nSZH:‘e) g 3(6 + 2) 1/ \/lognA,,z { }

1 AE (log n)!
< CM‘s(———) 2 e 50 as el (3.6)
log H(e)? ns;@ n
Combining (3.2)—(3.6), consequently, we obtain (3.1). O

Proposition 5. Let {X,,,n > 1} be a sequence of identically distributed NA random variables. If
EXf(logJr 1X1[)° < oo for any 0 < & < 1. Then we obtain, we have

1 o—1
ime Y 4Bn fm 2xP(|N| > i)dx =0, 3.7)
€lo n>H(e) n ey/nlogn ‘/ﬁ
6-1
lime® ) {ogm™” fm 2xP(IS,| > x)dx = 0. (3.8)
€l0 n? e/nlogn
n>H(e) (3
Proof: The proof of (3.7) is quite routine, we omit it. Applying Lemma 2.4, the proof of (3.8) are
exposed as follows: For a = 1/{12(5 + 2)}, we have a
> n(ogn)™! r 2xP{iS,| = x)dx
n>H(e) ey/nlogn
<C Z n~(logn)’ fm 20x + e)P{IS,,I > (x +€)nlog n} dx
n>H(e) 0
<C Z n~!(logn)® r 2(x + e)[ {2nP|X1| > a(x + €) ynlog n}
n>H(e) 0
_02 2 _%
+4dexp {()C—+t;)l(—)g} +4 {462a(x + €)log n} * ]dx
=C Z n~!(logn)° fm 2(x + €)1, + 11 + I13)dx. (3.9)
n>H(e) 0

Recalling the moment condition, it suffices to prove that

> ' logny’ f 2x + )l dx
0

n>H(e)

<C ) (logn)’E f 4xI (|X,| 2 ax/nlogn)dx

n>H(e) €

X2 .
<CE r L Jlog il - log " £(1X1] = x)1 (1Xl = VM) dx
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< CEX? |log|X,| ~ log ¢ I (X1} 2 VM)
< CEX}(log |X,|)* + CEX?|log e’ < oo. (3.10)

Hence, for 11;, we have

lim & % n'(ogny fo 2x + )ILdx — 0.

n>H(e)
Next, for 71,
; *° —-x%logn
Z n”!(logn)’ fm 2x+ e)lhdx <C Z n~(log n)§f 8xexp (——-S—g—)dx
n>H{e) ¢ n>H(e) €
32 6*e*logn
<C n~t(logny’ ( ) exp (—————
n};@ #logn 8
<c Yy (%%)n_l'éxé < . G.11)
n>He)
Hence
lim €% Z n”'(logny’ f 2Ax+e)lLdx —0 as €l0. (3.12)
e 0
Finally, for 115
00 00 92x2 I ~(6+2)
> nlGogny f 2+ Olhdx<C Y n(logny f gyl L 08" dx
o ] 36 +2)
n>H(e) n>H(e)
| 2 4 R 26-2
- T meme (313
Scngg@” (logn) (5+1){3(5+2)} € (3.13)
Hence
5 e 4 5 —(6+2) _
lim ¢ > 7 (logn)’ f 2x + €)llzdx < Ce™? (5_1_1) 3 (5 + 1) > 7 logn)™?
0 T 0 n>H(E)

ﬁCe‘zf —-@—SCM‘I—ao as M — oo,
Hiey x(log x)?

uniformly with respect to €.

Theorem 1. Let (X,,n > 1} be a sequence of identically distributed NA random variables. If
EX?(log" [X1])° < oo for any 0 < 6 < 1, then (1.4) holds.

Proof: In fact, one can easily get

i (lOgn,;)é—l ES%I (ISnl > e4/nlog n)

n=1

0

— (log n)® (log n)*~!
=é ——P{|§,] = eynlo + —_— f"” 2xP (IS, = x)dx
; n ( eve gn) Z E\/nlogn

2
n=1 n

= I + . 3.14)
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Consequently to verity Theorem 1 we only need to consider I; and L, respectively. From Propositions
1 and 3 we have

EIN 25+2
lim e21; = Al (3.15)
€l0 6+1
It follows from Propositions 4 and 5 that
1 5—1
lim €2 Z (°g ") ' 2xP (IS,] = x) dx — ' 2xP (INI > i)dx =0. (3.16)
€l0 e/nlogn e/logn Vx
Hence, by Proposition 2 and (3.16) we also have
. E| N|26+2
1 L= ———, 3.17
im el 56+ 1) G.17)

which completes the proof together with (3.15).
Next we will show that if S, is replaced by M,, = max <, S|, then Theorem 1 still holds. O

Proposition 6. (Fu and Zhang, 2007) Suppose that (W(t);t > 0} is a standard Wiener pro-
cess(Browinian motion). Then, forany 0 < § < 1,

+ (108 n)° 2EIN?*? & -1
elO m e2+2 Z ( sup |W(s)| > e 4/log n) ; an T )P

0<6<1 d+1

Proof: Refer to Huang and Zhang (2005). O

Proposition 7. (Zhao, 2008) Suppose that {W(t);t > 0} is a standard Wiener process. Then, for
any(<d<1,

logn)‘s 1 x \ 2EINP*?2 & (-1
m e? ( 2xP| sup |W(t = .
limm Z ’ rer o oan VO 2 2] = 56T ZaGn s oo

Theorem 2. Let {X,,n > 1} be a sequence of identically distributed NA random variables. If

EXf(log+ 1X11)® < oo for any 0 < & < 1, then (1.5) holds.

Proof: Note that Theorem 2 is the maximal version of Theorem 1. Hence, if we make some modi-
fication of the proof of Theorem 1, Theorem 2 will follow. As in (3.14), indeed, it suffices to study

that
Z (logn Mgl (M,, > e4/nlog n)
=ezz(long)P(M,,26\/nlogn)+i(k)gn¢fm 2xP (M, 2 x)dx
n=2 n=2

eynlogn

)61

= I3+ 14.

To pave the way for the proofs of I; of I, along the same lines as that of the proof of Theorem 1,
together with Lemmas 2 and 3 and Propositions 6 and 7. a
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4. Concluding Remark

It is of interest to show that the precise rate result in this kind of complete moment convergence also
holds for moving average process. In the future study, we investigate the precise rate of convergence
in complete moment of moving average processes based NA random variables by extending Theorems
1 and 2 to the moving average processes.
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