Effects of Treatments on the Distribution of Volatiles in Artemisia princeps Pampan

쑥의 처리조건에 따른 휘발성 성분 변화

  • Park, Min-Hee (Department of Food Science and Technology, Seoul National University of Technology) ;
  • Kim, Mi-Ja (Department of Food and Nutrition, Dongduk Women's University) ;
  • Cho, Wan-Il (Sensometrics Co., Ltd.) ;
  • Chang, Pahn-Shick (Department of Agricultural Biotechnology, Seoul National University) ;
  • Lee, Jae-Hwan (Department of Food Science and Technology, Seoul National University of Technology)
  • 박민희 (서울산업대학교 식품공학과) ;
  • 김미자 (동덕여자대학교 식품영양학과) ;
  • 조완일 ((주)센소메트릭스) ;
  • 장판식 (서울대학교 식품생명공학) ;
  • 이재환 (서울산업대학교 식품공학과)
  • Published : 2009.10.31

Abstract

Volatiles in Artemisia princeps Pampan. cv. sajabal (sajabalssuk) and A. princeps Pampan. (ssuk) treated with different processing were analyzed using headspace-solid phase microextraction (HS-SPME)/gas chromatography- a mass selective detector (GC-MS). Sajabalssuk and ssuk were treated with steam distillation (SD) and freeze-dried/steam distillation (FD/SD) while controls were raw sajabalssuk and raw ssuk. Sajabalssuk had significantly more total volatiles than ssuk in control and FD/SD treated samples (p<0.05). Major volatiles in raw sajabalssuk were 2-hexenal, 1,8-cineol, trans-caryophyllene, and hexanal while those in raw ssuk were 1-hexanol, ${\beta}$-myrcene, limonene, and 2-hexenal, which implies that substantial lipid oxidation occurred in raw samples. Sajabalssuk with SD and FD/SD treatment had higher peak areas of 1,8-cineole, 4-terpineol, 1-octen-3-ol, and ${\alpha}$-terpineol while ssuk with SD and FD/SD treatment possessed 1,8-cineol, camphor, borneol, artemisia ketone, ${\alpha}$-thujone, and 1-octen-3-ol, which showed that steam distillation produced more volatiles from terpenoids than raw samples. Based on the results of HS-SPME/GC-MS, relative amounts of volatiles from lipid oxidation including 2-hexenal, hexanal, and 1-hexanol were reduced in sajabalssuk and ssuk with freeze-drying and/or steam distillation treatment.

무처리(R), 수증기 증류처리(SD), 동결건조 후 수증기 증류 처리(FD/SD)한 사자발쑥과 일반 쑥의 휘발성분을 HS-SPME방법으로 추출 후 GC-MS로 동정하였다. 무처리 사자발쑥 및 동결건조 후 수증기 증류 처리한 사자발쑥의 총 volatile함량은 각각의 일반 쑥 시료보다 유의적으로 높았으며(p<0.05), 무처리 일반 쑥의 수증기 증류처리 시료의 경우에는 유의적인 차이가 없었다(p>0.05). 무처리 사자발쑥의 주요 휘발성분은 2-hexenal, 1,8-cineol, transcaryophyllene, hexanal이었고 무처리 일반 쑥은 1-hexanol, ${\beta}$-myrcene, limonene, 2-hexenal이었다. 반면에 수증기 증류처리(SD) 및 동결건조 후 수증기 증류처리(FD/SD)된 사자발쑥에서는 1,8-cineole, 4-terpineol, 1-octen-3-ol, ${\alpha}$-terpineol이, 수증기 증류처리(SD) 및 동결건조 후 수증기 증류처리(FD/SD) 된 일반 쑥의 경우에는 1,8-cineol, camphor, borneol, artemisia ketone, ${\alpha}$-thujone, 1-octen-3-ol이 주요 휘발성분이었다. 무처리 쑥의 경우 지방산화에 의해 발생하는 이취성분인 2-hexenal, hexanal과 1-hexanol이 많이 검출되었으나 수증기 증류처리(SD) 및 동결건조 후 수증기 증류처리(FD/SD) 된 시료는 정유성분 유래 휘발성분이 상대적으로 많이 검출되었다.

Keywords

References

  1. Rho TH, Seo GS. Growth characteristics and contents of chemical components in early cultured Artemisia sp. Korean J. Medicinal Crop Sci. 2: 95-100 (1994)
  2. Kwon MC, Kim CH, Kim HS, Lee SH, Chio GP, Park UY, You SG, Lee HY. Optimal extract condition for the enhancement of anticancer activities of Artemisia princeps Pampanini. Korean J. Medicinal Crop Sci. 15: 223-240 (2007)
  3. Lee SD, Park HH, Kim DW, Bang BH. Bioactive constituents and utilities of Artemisia sp. as medicinal herb and foodstuff. Korean J. Food Nutr. 13: 490-505 (2000)
  4. Yun KW, Jeong HJ, Kim JH. The influence of the growth season on the antimicrobial and antioxidative activity in Artemisia princeps var. Orientalis. Ind. Crop Prod. 27: 69-74 (2008) https://doi.org/10.1016/j.indcrop.2007.07.017
  5. Lee GD, Kim JS, Bae JO, Yoon HS. Antioxidative effectiveness of water extract and ether extract in wormwood(Artemisia montana Pampan). Korean J. Food Nutr. 21: 17-22 (1992)
  6. Yun KW, Choi SK. Seasonal variation in allelopathic potential of Artemisia princeps var. Orientalis on plants and microbes. J. Plant Biol. 46: 105-110 (2003) https://doi.org/10.1007/BF03030438
  7. Jang SB, Chang SY, Inn MK, Jeong JH, Yook CS. Studies on the components of essential oils in the aerial part of Artemisia mongolica. Bull. Kyunghee Pharma. Sci. 28: 45-49 (2000)
  8. Kim YS, Lee JH, Kim MN, Lee WG, Kim JO. Volatile flavor compounds from raw mugwort leaves and parched mugwort tea. Korean J. Food Nutr. 23: 261-267 (1994)
  9. Cho YH, Chiang MH. Essential oil composition and antibacterial activity of Artemisia capillaris, Artemisia argyi, and Artemisia princeps. Korean J. Intl. Agri. 13: 313-320 (2001)
  10. Cho YH, Park HS, Kim NG, Kim NS, Lee DS, Chiang MH. Analysis of essential oil in Artemisia capillaries Thumb., Artemisia scoparia, Artemisia spp. by GC/MS. Korean J. Hort. Sci. Technol. 18: 702 (2000)
  11. Deng C, Xu X, Yao N, Li N, Zhang X. Rapid determination of essential oil compounds in Artemisia selengensis Turcz by gas chromatography-mass spectrometry with microwave distillation and simultaneous solid-phase microextraction. Anal. Chim. acta 556: 289-294 (2006) https://doi.org/10.1016/j.aca.2005.09.038
  12. Deng C, Mao Y, Hu F, Zhang X. Development of gas chromatography- mass spectrometry following microwave distillation and simultaneous headspace single-drop microextraction for fast determination of volatile fraction in Chinese herb. J. Chromatogr. A 1152: 193-198 (2007) https://doi.org/10.1016/j.chroma.2006.08.074
  13. Arthur CL, Pawliszyn J. Solid phase microextraction with thermal desorption using fused silica optical fibers. Anal. Chem. 62: 2145-2148 (1999) https://doi.org/10.1021/ac00218a019
  14. Foley DM, Pickett K, Varon J, Lee JH, Min DB, Caporaso F, Prakash A. Pasteurization of fresh orange juice using gamma irradiation: microbiological, flavor and sensory analyses. J. Food Sci. 67: 1495-1501 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb10311.x
  15. Lee JH, Kang JH, Min DB. Optimization of solid phase microextraction on the headspace volatile compounds in kimchi, a traditional Korean fermented vegetable product. J. Food Sci. 68: 844- 848 (2003) https://doi.org/10.1111/j.1365-2621.2003.tb08253.x
  16. Jelen HH, Obuchowska M, Zawirska-Wojtasiak R, Wasowicz E. Headspace solid-phase microextraction use for the characterization of volatile compounds in vegetable oils of different sensory quality. J. Agr. Food Chem. 48: 2360-2367 (2000) https://doi.org/10.1021/jf991095v
  17. Steenson DF, Lee JH, Min DB. Solid phase microextraction analysis of volatile compounds of soybean and corn oils. J. Food Sci. 67: 71-76 (2002) https://doi.org/10.1111/j.1365-2621.2002.tb11361.x
  18. Lee JM, Kim DH, Chang PS, Lee JH. Headspace-solid phase microextraction (HP-SPME) analysis of oxidized volatiles form free fatty acids (FFA) and application for measuring hydrogen donating antioxidant activity. Food Chem. 105: 414-420 (2007) https://doi.org/10.1016/j.foodchem.2006.12.059
  19. Fu X, Xu S, Wang Z. Kinetics of lipid oxidation and off-odor formation in silver carp mince: the effect of lipoxygenase and hemoglobin. Food Res. Int. 42: 85-90 (2009) https://doi.org/10.1016/j.foodres.2008.09.004
  20. Pohjanheimo TA, Sandell MA. Headspace volatiles contributing to flavour and consumer liking of wellness beverages. Food Chem. 115: 843-851 (2009) https://doi.org/10.1016/j.foodchem.2009.01.012
  21. Paradiso VM, Summo C, Pasqualone A, Caponio F. Evaluation of different natural antioxidants as affecting volatile lipid oxidation products related to off-flavours in corn flakes. Food Chem. 113: 543-549 (2009) https://doi.org/10.1016/j.foodchem.2008.07.099
  22. Acree T, Arn H. Flavornet and human odor space. Available from: http://flavornet.org. Accessed Apr. 30, 2009.
  23. Ashraf M. The Pherobase-extensive database of insect pheromones and semiochemicals. Available form: http://pherobase.com. Accessed Apr. 30, 2009.