Suppressive Activity of Extract of Termialia chebula Retz. on Hepatic Fibrosis

가자(Terminalia chebula Retz.) 추출물의 간섬유화 억제활성

  • Lee, Hyun-Sun (Department of Food and Nutrition, College of Health Science, Korea University) ;
  • Koo, Yun-Chang (Division of Food Bioscience & Technology, College of Life Science and Biotechnology, Korea University) ;
  • Lee, Kwang-Won (Division of Food Bioscience & Technology, College of Life Science and Biotechnology, Korea University)
  • 이현순 (고려대학교 보건과학대학 식품영양학과) ;
  • 구윤창 (고려대학교 생명과학대학 식품공학부) ;
  • 이광원 (고려대학교 생명과학대학 식품공학부)
  • Published : 2009.10.31

Abstract

Activation of hepatic stellate cells (HSCs) is known to be responsible for hepatic fibrosis and cirrhosis. When round-shape quiescent HSCs go to activation by liver injury, production of extracellular matrix is increased, and its shape becomes myofibroblast-like shape. The activated HSCs are characterized by the high rate of proliferation and the increased production of extracellular matrix. One way of the regeneration of activated HSCs is an apoptosis induction followed by removing the activated myofibroblast-like cells. The effect of extract of Terminalia chebula Retz. (TCE) on cytotoxicity was evaluated using the rat primary hepatocyte, HepG2 and T-HSC/Cl-6 by incubating these cells with TCE up to the dose of $1,000{\mu}g/mL$. At the maximum dose of TCE, no cytotoxicity was found on primary hepatocyte and HepG2, but cytotoxic effect of TCE was found on activated HSCs, and T-HSC/Cl-6 in a U-shaped dose-response manner with the highest effect at $500{\mu}g/mL$ of TCE. Finally, we confirmed the occurrence of apoptotic cell death by annexin-V/PI double staining. The population of annexin-V positive cells was increased in a dose dependent manner.

간성상세포(HSC)는 간섬유화와 간경변에 중요한 역할을 한다고 알려져 있다. 간손상에 의해 둥근 모양의 간성상세포는 활성화되어 세포외기질(ECM)을 생산하는 myofibroblast와 같은 모양으로 활성화 된다. 활성화된 간성상세포의 특징은 빠른 증식 속도와 collagen과 같은 세포외 기질의 생산이다. 활성화된 간성상 세포의 제거방법은 apoptosis를 유도하는 것이다. 가자 추출물은 정상 간세포(rat primary hepatocyte), 간세포주(HepG2) 및 활성화된 간성상세포주인 T-HSC/Cl-6에 $1,000{\mu}g/mL$의 농도까지 처리하여 세포독성을 확인하였다. 그 결과 hepatocyte나 HepG2에서는 최고 농도에서도 독성이 없었으나 T-HSC/Cl-6는 U-shape 모양으로 사멸하는 것을 확인 하였다. T-HSC/Cl-6의 사멸이 apoptosis에 의한 것인지를 Annexin-V/PI double staining을 통하여 확인한 결과 apoptosis에 의해 T-HSC/Cl-6의 사멸이 일어나는 것을 확인하였다.

Keywords

References

  1. Pinzani M, Marra F. Cytokine receptors and signaling in hepatic stellate cells. Semin. Liver Dis. 21: 397-416 (2001) https://doi.org/10.1055/s-2001-17554
  2. Bissell DM, Roulot D, George J. Transforming growth factor $\beta$ and the liver. Hepatology 34: 859-867 (2001) https://doi.org/10.1053/jhep.2001.28457
  3. Friedman SL. Seminars in medicine of the Beth Israel Hospital, Boston. The cellular basis of hepatic fibrosis. Mechanisms and treatment strategies. New Engl. J. Med. 328: 1828-1835 (1993) https://doi.org/10.1056/NEJM199306243282508
  4. Parsons CJ, Takashima M, Rippe RA. Molecular mechanisms of hepatic fibrogenesis. J. Gastroen. Hepatol. 22: 79-84 (2007) https://doi.org/10.1111/j.1440-1746.2006.04659.x
  5. Rockey DC. Antifibrotic therapy in chronic liver disease. Clin. Gastroen. Hepatol. 3: 95-107 (2005) https://doi.org/10.1016/S1542-3565(04)00445-8
  6. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J. Gastroen. Hepatol. 22: 73-78 (2007) https://doi.org/10.1111/j.1440-1746.2006.04658.x
  7. Vera M, Nieto N. Hepatic stellate cells and alcoholic liver disease. Rev. Esp. Enferm. Dig. 98: 674-684 (2006)
  8. Moreira RK, Hepatic stellate cells and liver fibrosis. Arch. Pathol. Lab. Med. 131: 1728-1734 (2007)
  9. Elsharkawy AM, Oakley F, Mann DA. The role and regulation of hepatic stellate cell apoptosis in reversal of liver fibrosis. Apoptosis 10: 927-939 (2005) https://doi.org/10.1007/s10495-005-1055-4
  10. Henderson NC, Iredale JP. Liver fibrosis: Cellular mechanisms of progression and resolution. Clin. Sci. 112: 265-280 (2007) https://doi.org/10.1042/CS20060242
  11. Kisseleva T, Brenner DA. Role of hepatic stellate cells in fibrogenesis and the reversal of fibrosis. J. Gastroen. Hepatol. 22: 73-78 (2007) https://doi.org/10.1111/j.1440-1746.2006.04658.x
  12. Kirtikar KR, Basu BD. Terminalia chebula. Vol. 1, pp. 1020-1023. In: Indian Medicinal Plants. Kirtikar KR, Basu BD (eds). 2nd ed. Lalit Mohan Basu Publications, Allahabad, India (1935)
  13. Saleem A, Husheem M, Harkonen P, Pihlaja K. Inhbition of cancer cell growth by crude extract and the phenolics of Terminalia chebula Retz. fruit. J. Ethnopharmacol. 81: 327-336 (2002) https://doi.org/10.1016/S0378-8741(02)00099-5
  14. Sabu MC, Kuttan R. Antidiabetic activity of medicinal plants and its relationship with their antioxidant properties. J. Ethnopharmacol. 81: 155-160 (2002) https://doi.org/10.1016/S0378-8741(02)00034-X
  15. Kaur S, Arora S, Kaur K, Kumar S. The in vitro antimutagenic activity of Triphala-an Indian herbal drug. Food Chem. Toxicol. 40: 527-534 (2002) https://doi.org/10.1016/S0278-6915(01)00101-6
  16. Malekzadeh F, Ehsanifar H, Shahamat M, Levin M, Colwell RR. Antibacterial activity of black myrobalan (Terminalia chebula Retz) against Helicobacter pylori. Int. J. Antimicrob. Ag. 18: 85-88 (2001) https://doi.org/10.1016/S0924-8579(01)00352-1
  17. Jagtap AG, Karkera SG. Potential aqueous extract of Terminalia Chebula as an anticaries agent. J. Ethnopharmocol. 68: 299-306 (1999) https://doi.org/10.1016/S0378-8741(99)00058-6
  18. Lee HS, Jung SH, Yun BS, Lee KW. Isolation of chebulic acid from Terminalia chebula Retz. and its antioxidant effect in isolated rat hepatocytes. Arch. Toxicol. 81: 211-218 (2007) https://doi.org/10.1007/s00204-006-0139-4
  19. Lee HS, Won NH, Kim KH, Lee H, Jun W, Lee KW. Antioxidant effects of aqueous extract of Terminalia chebula in vivo and in vitro. Biol. Pharm. Bull. 28: 1639-1644 (2005) https://doi.org/10.1248/bpb.28.1639
  20. Bissell DM, Hammaker LE, Meyer UA. Parenchymal cells from adult rat liver in nonproliferating monolayer culture. I. Functional studies. J. Cell Biol. 59: 722-734 (1973) https://doi.org/10.1083/jcb.59.3.722
  21. Bonney RJ. Adult liver parenchymal cells in primary culture characteristics and cell recognition standards. In Vitro 10: 130-142 (1974) https://doi.org/10.1007/BF02615346
  22. Kim JY, Kim KM, Nan JX, Zhao YZ, Park PH, Lee SJ, Sohn DH. Induction of apoptosis by tanshinone I via cytochrome C release in activated hepatic stellate cells. Pharmacol. Toxicol. 92: 195-200 (2003) https://doi.org/10.1034/j.1600-0773.2003.920410.x
  23. Zhao YZ, Kim JY, Park EJ, Lee SH, Woo SW, Ko G, Sohn DH. Tetrandrine induces apoptosis in hepatic stellate cells. Phytother. Res. 18: 306-309 (2004) https://doi.org/10.1002/ptr.1435
  24. Castagnoli C, Alotto D, Cambieri I, Casimiri R, Aluffi M, Stella M, Alasia ST, Magliacani G. Evaluation of donor skin viability: Fresh and cryopreserved skin using tetrazolioum salt assay. Burns 29: 759-767 (2003) https://doi.org/10.1016/j.burns.2003.01.001
  25. Telli C, Serper A, Dogan AL, Guc D. Evaluation of the cytotoxicity of calcium phosphate root canal sealers by MTT assay. J. Endodont. 25: 811-813 (1999) https://doi.org/10.1016/S0099-2399(99)80303-3
  26. Wising C, Azem J, Zetterberg M, Svensson LA, Ahlman K, Lagergrd T. Induction of apoptosis/necrosis in various human cell lineages by Haemophilus ducreyi cytolethal distending toxin. Toxicon 45: 767-776 (2005) https://doi.org/10.1016/j.toxicon.2005.01.016
  27. Elingold I, Isollabella MP, Casanova MB, Celentano AM, Prez C, Cabrera JL, Diez RA, Dubin M. Mitochondrial toxicity and antioxidant activity of a prenylated flavonoid isolated from Dalea elegans. Chem.-Biol. Interact. 171: 294-305 (2008) https://doi.org/10.1016/j.cbi.2007.10.005
  28. Iredale JP, Arthur MJ. Hepatocyte-matrix interactions. Gut 35: 729-732 (1994) https://doi.org/10.1136/gut.35.6.729
  29. Issa R, Zhou X, Constandinou CM, Fallowfield J, Millward- Sadler H, Gaca MD, Scoliman I, Trim N, Knorr A, Arthur MJ, Benyon RC, Iredale JP. Spontaneous recovery from micronodular cirrhosis: evidence for incomplete resolution associated with matrix cross-linking. Gastroenterology 126: 1795-1808 (2004) https://doi.org/10.1053/j.gastro.2004.03.009
  30. Fu Y, Zheng S, Lu SC, Chen A. Epigallocatechin-3-gallate inhibits growth of activated hepatic stellate cells by enhancing the capacity of glutathione synthesis. Mol. Pharmacol. 29: 1465-1473 (2008) https://doi.org/10.1124/mol.107.040634
  31. Yun HS, Do SH, Jeong WI, Yang HJ, Yuan DW, Hong IH, Lee HR, Lee IS, Kim YK, Choi MS, Kim HA, Jeong KS. Cytotoxic effects of the conjugated linoleic acid isomers t10c12, c9t11- CLA, and mixed form on rat hepatic stellate cells and CCl(4)- induced hepatic fibrosis. J. Nutr. Biochem. 19: 175-183 (2008) https://doi.org/10.1016/j.jnutbio.2007.02.007
  32. Horani A, Muhanna N, Pappo O, Melhem A, Alvarez CE, Doron S, Wehbi W, Dimitrios K, Friedman SL, Safadi R. Beneficial effect of glatiramer acetate (Copaxone) on immune modulation of experimental hepatic fibrosis. Am. J. Physiol.-Gastr. L. 292: 628- 638 (2007) https://doi.org/10.1152/ajpgi.00137.2006