Effect of Chlorella vulgaris Intake on Antioxidative Capacity in Rats Oxidatively Stressed with Dietary Cadmium

  • Kim, You-Jin (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Jeong, Se-Won (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kwon, Sang-Hee (Department of Nutritional Science and Food Management, Ewha Womans University) ;
  • Kim, Mi-Kyung (Department of Nutritional Science and Food Management, Ewha Womans University)
  • Published : 2009.10.31

Abstract

This study was conducted to investigate whether dietary chlorella intake could have an effect on antioxidative capacity in rats oxidatively stressed with cadmium (Cd). Sprague-Dawley rats fed dietary chlorella (0, 5, and 10%) for 4 weeks after induction of oxidative stress by exposing to Cd (200 ppm) for 8 weeks. After the oxidative stress applied, plasma and liver malondialdehyde concentrations and xanthine oxidase activities were decreased in 5% chlorella fed group compared to chlorella free group. Although liver heme oxygenase-1 protein expression was not affected by chlorella, the enzyme activity was improved in 5% chlorella fed group. Erythrocyte superoxide dismutase activity and hepatic metallothionein concentration were increased in 5% chlorella fed group. However, 10% chlorella intake had no effect on the improvement of oxidative stress-related enzymes and proteins. These findings suggest that, after induction of oxidative stress with Cd, 5% chlorella intake might improve antioxidative capacity against oxidative stress.

Keywords

References

  1. Gropper SS, Smith JL, Groff JL. The antioxidant nutrients, reactive species, and disease. pp. 368-377. In: Advanced Nutrition and Human Metabolism. 4th ed. Thomson Wadsworth, Belmont, CA, USA (2005)
  2. Waisberg M, Joseph P, Hale B, Beyersmann D. Molecular and cellular mechanisms of cadmium carcinogenesis: A review. Toxicology 192: 95-117 (2003) https://doi.org/10.1016/S0300-483X(03)00305-6
  3. Hassoun EA, Stohs SJ. Cadmium-induced production of superoxide anion and nitric oxide, DNA single strand breaks, and lactate dehydrogenase in J7774A.1 cell cultures. Toxicology 112: 219-226 (1996) https://doi.org/10.1016/0300-483X(96)03404-X
  4. Valko M, Morris H, Cronin MTD. Metals, toxicity, and oxidative stress. Curr. Med. Chem. 12: 1161-1208 (2005) https://doi.org/10.2174/0929867053764635
  5. Muller L. Consequences of cadmium toxicity in rat hepatocytes: Mitochondrial dysfunction and lipid peroxidation. Toxicology 40: 285-295 (1986) https://doi.org/10.1016/0300-483X(86)90061-2
  6. Bartosiewicz MJ, Jenkins D, Penns D, Emery J, Buckpitt A. Unique gene expression patterns in liver and kidney associated with exposure to chemical toxicants. J. Pharmacol. Exp. Ther. 297: 895- 905 (2001)
  7. Liu J, Kadiiska MB, Corton JC, Qu W, Waalkes MP, Mason RP, Liu Y, Klaassen CD. Acute cadmium exposure induces stress-related gene expression in wild type and metallothionein-I/II null mice. Free Radical Bio. Med. 32: 525-535 (2002) https://doi.org/10.1016/S0891-5849(01)00826-7
  8. Lopez E, Arce C, Oset-Gasque MJ, Canadas S, Gonzalez MP. Cadmium induces reactive oxygen species generation and lipid peroxidation in cortical neurons in culture. Free Radical Bio. Med. 40: 940-951 (2006) https://doi.org/10.1016/j.freeradbiomed.2005.10.062
  9. Hussain T, Shukla GS, Chandra SV. Effects of cadmium on superoxide dismutase and lipid peroxidation in liver and kidney of growing rats: in vivo and in vitro studies. Pharmacol. Toxicol. 60: 355-359 (1987) https://doi.org/10.1111/j.1600-0773.1987.tb01526.x
  10. Thijssen S, Cuypers A, Maringwa J, Smeets K, Horemans N, Lambrichts I, Van Kerkhove E. Low cadmium exposure triggers a biphasic oxidative stress response in mice kidneys. Toxicology 236: 29-41 (2007) https://doi.org/10.1016/j.tox.2007.03.022
  11. Shibata S, Natori Y, Nishhara T, Tomisaka K, Matsumoto K, Sansawa H, Nguyen VC. Antioxidant and anti-cataract effects of chlorella on rats with streptozocin-induced diabetes. J Nutr. Sci. Vitaminol. 49: 334-339 (2003) https://doi.org/10.3177/jnsv.49.334
  12. Shibata S, Oda K, Onodera-Masuoka N, Matsubara S, Kikuchi- Hayakawa H, Ishikawa F, Iwabuchi A, Sansawa H. Hypocholesterolemic effects of indigestible fraction of Chlorella regularis in cholesterol-fed rats. J. Nutr. Sci. Vitaminol. 47: 373-377 (2001) https://doi.org/10.3177/jnsv.47.373
  13. Miranda MS, Sato S, Mancini-Filho J. Antioxidant activity of the microalga Chlorella vulgaris cultured on special conditions. Bull. Chim. Farm. 140: 165-168 (2001)
  14. Negishi T, Rai H, Hayatsu H. Antigenotoxic activity of natural chlorophylls. Mutat. Res. 376: 67-100 (1997)
  15. Merchant RE, Andre CA. A review of recent clinical trials of the nutritional supplement Chlorella pyrenoidosa in the treatment of fibromyalgia, hypertension, and ulcerative colitis. Altern. Ther. Health M. 7: 79-91 (2001)
  16. Son YA, Shim JA, Hong S, Kim MK. Intake of Chlorella vulgaris improves antioxidative capacity in rats oxidatively stressed with dietary cadmium. Ann. Nutr. Metab. 54: 7-14 (2009) https://doi.org/10.1159/000199453
  17. Kim KR, Chai YM, Rhee SJ. Effects of vitamin E on liver cytochrome P450 content and xanthine oxidase activity in acute cadmium-poisoned rats. J. Korean Soc. Food Sci. Nutr. 28: 1355- 1363 (1999)
  18. Park JA, Kim MK. Effect of Korean native plant diet on lipid metabolism, antioxidative capacity, and camdmium detoxification in rats. Korean J. Nutr. 32: 353-368 (1999)
  19. Kim MJ, Hong JH, Rhee SJ. Effect of vitamin E on cadmium accumulation and excretion in chronic cadmium poisoned rats. Korean J. Nutr. 36: 691-698 (2003)
  20. Kwan OR, Kim MK. Effect of dietary protein and calcium levels on metallothionein and histopathological changes during cadmium intoxication in rats. Korean J. Nutr. 25: 360-378 (1992)
  21. Park JY, Kim MK. Effect of dietary protein and cysteine levels on cadmium toxicity in rats. Korean J. Nutr. 29: 261-471 (1996)
  22. Morita K, Matsueda T, Iida T, Hasegawa T. Chlorella accelerates dioxin excretion in rats. J. Nutr. 129: 1731-1736 (1999)
  23. Matsuura E, Nemoto T, Hozumi H, Izumi K, Saito Y, Ishida H, Fukimbara T, Kawahara H. Effect of chlorella on rats with iron deficient anemia. Kitasato Arch. Exp. Med. 64: 193-204 (2001)
  24. Shim JY, Shin HS, Han JG, Park HS, Lim BL, Chung KW, Om AS. Protective effects of Chlorella vulgaris on liver toxicity in cadmium-administered rats. J. Med. Food 11: 479-485 (2008) https://doi.org/10.1089/jmf.2007.0075
  25. KFDA. Food Code. Korea Food & Drug Administration, Seoul, Korea (2005)
  26. KFDA. Health Functional Food Code. Korea Food & Drug Administration, Seoul, Korea (2006)
  27. Yoon CG. A modified colorimetric assay for xanthine oxidase in rat liver extracts. J. Keimyung Research, Keimyung Junior College, Daegu, Korea 2: 295-308 (1984)
  28. Mayanil CSK, Kazmi SMJ, Baquer NZ. Na, K-ATPase, and Mg ATPase activities in different regions of rat brain during alloxan disbetes. J. Neurochem. 39: 903-908 (1982) https://doi.org/10.1111/j.1471-4159.1982.tb11475.x
  29. Roy D, Pathak DN, Singh R. Effects of chlorpromazine on the activities of antioxidant enzymes and lipid peroxidation in the various regions of aging rat brain. J. Neurochem. 42: 628-633 (1984) https://doi.org/10.1111/j.1471-4159.1984.tb02728.x
  30. Lowry OH, Rosebrough NJ, Farr AL, Randall RJ. Protein measurement with folin phenol reagent. J. Biol. Chem. 193: 265- 275 (1951)
  31. Flohe L, Becker R, Brigelius R, Lengfelder E, Otting F. Convenient assays for superoxide dismutase. pp. 287-293. In: CRC Handbook of Free Radicals and Antioxidants in Biomedicine. CRC Press, Inc., Boca Raton, FL, USA (1992)
  32. McCord JM, Fridovich I. Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244: 6049-6055 (1969)
  33. Eaton DL, Toal BF. Evaluation of the Cd/Hb affinity assay for the rapid determination of metallothionein in biological tissue. Toxicol. Appl. Pharmacol. 66: 134-142 (1982) https://doi.org/10.1016/0041-008X(82)90068-0
  34. Eaton DL, Cherian MG. Determination of metallothionein in tissue by cadmium-hemoglobin affinity assay. Methods Enzymol. 205: 83- 88 (1991) https://doi.org/10.1016/0076-6879(91)05089-E
  35. Onosaka S, Cherian MG. Comparison of metallothionein determination by polarographic and cadmium-saturation methods. Toxicol. Appl. Pharmacol. 63: 270-274 (1982) https://doi.org/10.1016/0041-008X(82)90049-7
  36. Halliwell B. Free radicals, antioxidants, and human disease: Curiosity, cause, or consequence? Lancet 344: 721-724 (1994) https://doi.org/10.1016/S0140-6736(94)92211-X
  37. Erdogan Z, Erdogan S, Celik S, Unlu A. Effects of ascorbic acid on cadmium-induced oxidative stress and performance of broilers. Biol. Trace Elem. Res. 104: 19-32 (2005) https://doi.org/10.1385/BTER:104:1:019
  38. Stajn A, Zikic RV, Ognjanovic B, Saicic ZS, Pavlovic SZ, Kostic MM, Petrovic VM. Effect of cadmium and selenium on the antioxidant defense system in rat kidneys. Comp. Biochem. Phys. C 117: 167-172 (1997)
  39. Liu W, Li M, Huang F, Zhu J, Dong W, Yang J. Effects of cadmium stress on xanthine oxidase and antioxidant enzyme activities in Boleophthalmus pectinirostris liver. Ying Yong Sheng Tai Xue Bao 17: 1310-1314 (2006)
  40. Chan HM, Cherian MG. Protective roles of metallothionein and glutathione in hepatotoxicity of cadmium. Toxicology 72: 281-290 (1992) https://doi.org/10.1016/0300-483X(92)90179-I
  41. Hayes SD, McLellan LL. Glutathione and glutathione-dependent enzymes represent a co-ordinately regulated defence against oxidative stresss. Free Radical Res. 31: 273-300 (1999) https://doi.org/10.1080/10715769900300851
  42. Onosaka S, Cherian MG. The induced synthesis of metallothionein in various tissues of rats in response to metals. Toxicology 22: 91- 101 (1981) https://doi.org/10.1016/0300-483X(81)90109-8
  43. Shim JA, Son YA, Park JM, Kim MK. Effect of chlorella intake on cadmium metabolism in rats. Nutrition RP 3: 15-22 (2008) https://doi.org/10.4162/nrp.2009.3.1.15
  44. Taketani S, Kohno H, Yshinaga T, Tokunaga R. The human 32-kDa stress protein induced by exposure to arsenite and cadmium ions is heme oxygenase. FEBS Lett. 245: 173-176 (1989) https://doi.org/10.1016/0014-5793(89)80215-7
  45. Srisook K, Jung NH, Kim BR, Cha SH, Kim HS, Cha YN. Heme oxygenase-1-mediated partial cytoprotective effect by NO on cadmium-induced cytotoxicity in C6 rat glioma cells. Toxicol. In Vitro 19: 31-39 (2005) https://doi.org/10.1016/j.tiv.2004.04.012
  46. Ossola JO, Tomaro ML. Heme oxygenase induction by camdium chloreid: Evidence for oxidative stress involvement. Toxicology 104: 141-147 (1995) https://doi.org/10.1016/0300-483X(95)03157-B
  47. Vijayavel K, Anbuselvam C, Balasubramanian MP. Antioxidant effect of the marine algae Chlorella vulgaris against naphthaleneinduced oxidative stress in the albino rats. Mol. Cell. Biochem. 303: 39-44 (2007) https://doi.org/10.1007/s11010-007-9453-2
  48. Han JG, Kang GG, Kim JK, Kim SH. The present status and future of chlorella. Food Sci. Indus. 35: 64-69 (2002)
  49. Guzman S, Gato A, Galleja JM. Antiinflammatory, analgesic, and free radical scavenging activities of the marine microalgae Chlorella stigmatophora and Phaeodactylum tricornutum. Phytother. Res. 15: 224-230 (2001) https://doi.org/10.1002/ptr.715
  50. Atroshi F, Rizzo A, Westermarck T, Alivehmas T. Antioxidant nutrients and mycotoxins. Toxicology 180: 151-167 (2002) https://doi.org/10.1016/S0300-483X(02)00388-8
  51. Kumar SS, Devasagayarm TP, Bhushan B, Verma NC. Scavenging of reactive oxygen species by chlorophyllin: An EST study. Free Radical Res. 35: 563-574 (2001) https://doi.org/10.1080/10715760100301571
  52. Sato M. Biological antioxidant defense system and metallothionein. Jpn. J. Tox. Env. Health 38: 228-239 (1992) https://doi.org/10.1248/jhs1956.38.228
  53. Sato M, Bremner I. Oxygen free radicals and metallothionein. Free Radical Bio. Med. 14: 325-337 (1993) https://doi.org/10.1016/0891-5849(93)90029-T
  54. Johnson MK, Loo G. Effects of epigallocatechin gallate and quercetin on oxidative damage to cellular DNA. Mutat. Res. 459: 211-218 (2000) https://doi.org/10.1016/S0921-8777(99)00074-9
  55. Sareen SG, Jack LS, James LG. Microminerals. pp. 417-484. In: Advanced Nutrition and Human Metabolism. 4th ed. Thomson Wadsworth, Belmont, CA, USA (2005)