DOI QR코드

DOI QR Code

Al2TiO5-machinable Ceramics Made by Reactive Sintering of Al2O3 and TiO2

Al2O3와 TiO2의 반응소결로 제조한 Al2TiO5-기계가공성 세라믹스

  • Park, Jae-Hyun (Department of Materials and Components Engineering, Dongeui University) ;
  • Lee, Won-Jae (Department of Materials and Components Engineering, Dongeui University) ;
  • Kim, Il-Soo (Department of Materials and Components Engineering, Dongeui University)
  • 박재현 (동의대학교 융합부품공학과) ;
  • 이원재 (동의대학교 융합부품공학과) ;
  • 김일수 (동의대학교 융합부품공학과)
  • Received : 2010.09.27
  • Accepted : 2010.10.25
  • Published : 2010.11.30

Abstract

Aluminium titanate($Al_2TiO_5$) has extremely anisotropic thermal expansion properties in single crystals, and polycrystalline material spontaneously microcracks in the cooling step after sintering process. These fine intergranular cracks limit the strength of the material, but provide an effective mechanism for absorbing strain energy during thermal shock and preventing catastrophic crack propagation. Furthermore, since machinable BN-ceramics used as an insulating substrate in current micro-electronic industry are very expensive, the development of new low-cost machinable substrate ceramics are consistently required. Therefore, cheap $Al_2TiO_5$-machinable ceramics was studied for the replacement of BN ceramics. $Al_2O_3-Al_2TiO_5$ ceramic composite was fabricated via in-situ reaction sintering. $Al_2O_3$ and $TiO_2$ powders were mixed with various mol-ratio and sintered at 1400 to $1600^{\circ}C$ for 1 h. Density, hardness and strength of sintered ceramics were systematically measured. Phase analysis and microstructures were observed by XRD and SEM, respectively. Machinability of each specimens was tested by micro-hole machining. The results of research showed that the $Al_2TiO_5$-composites could be used for low-cost machinable ceramics.

Keywords

References

  1. P. Blake, T. Bifano, T. Dow, and R. O. Scattergood, “Precision Machining of Ceramic Materials,” Ceram. Bull., 67 [6] 1038-43 (1988).
  2. C. K. Chyung, G. H. Beall, and D. G. Grossman, “Microstructure and Mechanical Properties of Mica Glass-Ceramics,” pp. 1167-1194 in 10th Int. Congress on Glass. Ed. by M. Kunugi et. al., Kyoto, 1974.
  3. B. Ashouri Rad and P. Alizade, “Pressureless Sintering and Mechanical Properties of $SiO_{2}-Al_{2}O_{3}-MgO-K_{2}O-TiO_{2}-F(CaO-Na_{2}O)$ Machinable Glass-ceramics,” Ceram. Int., 35 2775-80 (2009). https://doi.org/10.1016/j.ceramint.2009.03.027
  4. S. Taruta, R. Fujisawa, and K. Kitajima, “Preparation and Mechanical Properties of Machinable Alumina/mica Composites,” J. Eur. Ceram. Soc., 26 1687-93 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.03.258
  5. Y. Li, G. Quio, and Z. Jin, “Machinable $Al_{2}O_{3}$-BN Composite Ceramics with Strong Mechanical Properties,” Mater. Res. Bull., 37 1401-9 (2002). https://doi.org/10.1016/S0025-5408(02)00786-9
  6. X. Zhang, R. Zhang, G. Chen, and W. Han, “Microstructure, Mechanical Properties and Thermal Shock Resistance of Hot-pressed $ZrO_2$(3Y)-BN Composites,” Mater. Sci. Eng. A, 497 195-99 (2008). https://doi.org/10.1016/j.msea.2008.06.038
  7. H. Wu and W. Zhang, “Fabrication and Properties of $ZrB_2$-SiC-BN Machinable Ceramics,” J. Eur. Ceram. Soc., 30 1035-42 (2010). https://doi.org/10.1016/j.jeurceramsoc.2009.09.022
  8. A. A. Buchheit, G. E. Hilmas, W. G. Fahrenholtz, D. M. Deason, and H. Wang, “Mechanical and Thermal Properties of AlN-BN-SiC Ceramics,” Mater. Sci. Eng. A, 494 239-46 (2008). https://doi.org/10.1016/j.msea.2008.05.051
  9. Y. S. Yoon, J. H. Lee, W. S. Cho, M. W. Cho, and E. S. Lee, “Mechanical Properties and Machinability of Machinable Ceramics (in Korean),” Ceramist, 6 [3] 12-7 (2003).
  10. S.-Y. Beck, M-W. Cho, and W.-S. Cho, “Mechanical Properties and End-milling Characteristics of AlN-hBN Based Machinable Ceramics,” J. Kor. Ceram. Soc., 45 [1] 77-81 (2008).
  11. T. Yamaguchi, “Technology of Characterization to Ceramics(in Japan),” Ceramics, 19 [6] 520-29 (1984).
  12. H. A. J Thomas and R. Stevens “Aluminium Titanate - A Literature Review,” Br. Ceram. Trans. J., 88 144-51 (1989).
  13. I. J. Kim and C. Zografou, “Thermal Shock Resistance of $Al_{2}TiO_{5}$ Ceramics Prepared from Electrofused Powders,” J. Kor. Ceram. Soc., 35 [10] 1061-69 (1998).
  14. I. J. Kim, H. B. Lee, and Y. S. Ko, “Application of $Al_{2}TiO_{5}$ Ceramics to Automobile Engine(in Korean),” Ceram. Tech., 10 [1] 68-75 (1995).
  15. I. J. Kim, H. B. Lee, and Y. S. Ko, “Application of $Al_{2}TiO_{5}$ Ceramics to High Temperature Structural Material Industry(in Korean),” Ceram. Tech., 10 [3] 283-88 (1995).
  16. S.-Y. Park, S.-W. Jung, and Y.-B. Chung, “The Effect of Starting Powder on the Microstructure Development of Alumina-aluminium Titanate Composites,” Ceram. Int., 29 707-12 (2003). https://doi.org/10.1016/S0272-8842(02)00221-3
  17. S. W. Kim, H. J. Lee, and H. L. Lee, “Effects of MgO and $SiO_2$ on Thermal Decomposition of $Al_{2}TiO_{5}$,” J. Kor. Ceram. Soc., 36 [4] 425-31 (1999).
  18. S. W. Kim, H. J. Lee, and H. L. Lee, “Effects of Bicomponent Additives on Thermal Decomposition of $Al_{2}TiO_{5}$,” J. Kor. Ceram. Soc., 36 [6] 632-39 (1999).
  19. R. Raj, “Fundamental Research in Structural Ceramics for Service Near 2000${\circ}$C,” J. Am. Ceram. Soc., 76 [9] 2147-74 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb07750.x
  20. S. Bueno, L. Micele, C. Baudin, and G. de Portu, “Reduced Strength Degradation of Alumina-aluminium Titanate Composite Subjected to Low-velocity Impact Loading,” J. Eur. Ceram. Soc., 28 2923-31 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.04.024

Cited by

  1. vol.50, pp.6, 2013, https://doi.org/10.4191/kcers.2013.50.6.372
  2. Fabrication and Machinability of Mullite-ZrO2-Al2TiO5 Ceramics vol.52, pp.6, 2015, https://doi.org/10.4191/kcers.2015.52.6.423