DOI QR코드

DOI QR Code

Synthesis and Electrochemical Characteristics of Li4Ti5O12 Nanofibers by Hydrothermal Method

수열법에 의한 Li4Ti5O12 Nanofibers 합성 및 전기화학적 특성에 관한 연구

  • Kim, Eun-Kyung (Electronic Materials Laboratory, Korea Institute of Ceramic Engineering and Technology) ;
  • Choi, Byung-Hyun (Electronic Materials Laboratory, Korea Institute of Ceramic Engineering and Technology) ;
  • Jee, Mi-Jung (Electronic Materials Laboratory, Korea Institute of Ceramic Engineering and Technology) ;
  • Kwon, Yong-Jin (Electronic Materials Laboratory, Korea Institute of Ceramic Engineering and Technology) ;
  • Seo, Han (Electronic Materials Laboratory, Korea Institute of Ceramic Engineering and Technology) ;
  • Kim, Young-Jun (Advanced Batteries Research Center, Korea Electronics Technology Institute) ;
  • Kim, Kwang-Bum (Materials Science & Engineering, Yonsei University)
  • 김은경 (한국세라믹기술원 광전자세라믹본부) ;
  • 최병현 (한국세라믹기술원 광전자세라믹본부) ;
  • 지미정 (한국세라믹기술원 광전자세라믹본부) ;
  • 권용진 (한국세라믹기술원 광전자세라믹본부) ;
  • 서한 (한국세라믹기술원 광전자세라믹본부) ;
  • 김영준 (전자부품연구원 차세대전지연구센터) ;
  • 김광범 (연세대학교 신소재공학과)
  • Received : 2010.11.17
  • Accepted : 2010.11.23
  • Published : 2010.11.30

Abstract

In this paper the effect of the structure, particle size, morphology of nanofibers and nanoparticles for the electrochemical characteristics of $Li_4Ti_5O_{12}$ was investigated. The $H_2Ti_2O_5{\cdot}H_2O$ synthesized in hydrothermal treatment from a NaOH treatment on $TiO_2$ by ion exchange processing with HCl solutions. After the $Li_4Ti_5O_{12}$ nanofibers synthesized in hydrothermal treatment of $H_2Ti_2O_5{\cdot}H_2O$ and $LiOH{\cdot}H_2O$. The hydrogen titanate precursor prepared by ion exchange processing with 0.1~0.3M HCl solutions and the final products calcined at $350^{\circ}C{\sim}400^{\circ}C$. The $Li_4Ti_5O_{12}$ nanofibers showed well reversibility during the insertion and extraction of Li, good cycle performance, high capacity and low electrochemical reaction resistance than nanoparticles. also c-rate exhibited a discharge capacity of 172 mAh/g at 0.2C and 115mAh/g at 5C, which is the 77%, 67% of that obtained in the process charged, discharged at 0.2C.

Keywords

References

  1. Zhenguo Yang, “Nanostructures and Lithium Electrochemical Reactivity of Lithium Titanites and Titanium Oxides: A Review,” J. Power Sources, 192 [2] 588-98 (2009). https://doi.org/10.1016/j.jpowsour.2009.02.038
  2. J.-K. Park, “Principles and Applications of Lithium Secondary Batteries,” p. 456, Hongnung Publushing Company, Seoul. 2001.
  3. Y. Tang, L. Yang, S. Fang, and Z. Qiu, “$Li_{4}Ti_{5}O_{12}$ Hollow Microspheres Assembled by Nanosheets as an Anode Material for High-rate Lithium Ion Batteries,” Electrochimica Acta, 54 [26] 6244-49 (2009). https://doi.org/10.1016/j.electacta.2009.05.092
  4. Chunhai Jiang, “Effect of Particle Dispersion on High Rate Performance of Nano-sized $Li_{4}Ti_{5}O_{12}$ Anode,” Electrochimica Acta, 52 [23] 6470-75 (2007). https://doi.org/10.1016/j.electacta.2007.04.070
  5. M.-H. Oh, H.-J. Kim, and Y.-J. kim, “Electrochemical Study of Nanoparticle $Li_{4}Ti_{5}O_{12}$ as Negative Electrode Material for Lithium Secondary Battery (in Korean),” J. Kor. Electrochem. Soc., 9 [1] 1-5 (2006). https://doi.org/10.5229/JKES.2006.9.1.001
  6. J. Li, Z. Tang, and Z. Zhang, “Controllable Formation and Electrochemical Properties of One-dimensional Nanostructured Spinel $Li_{4}Ti_{5}O_{12}$,” Electrochem. Commun., 7 [9] 894-99 (2005). https://doi.org/10.1016/j.elecom.2005.06.012
  7. J.-W. Lee, J.-I. Kim, K.-C. Ro, S.-M. Park, M.-J. Ji, and B.- H. Choi, “Hydrothennal Synthesis and Electrochemical Perfonnances of Array of $Li_{4}Ti_{5}O_{12}$ Nanoparticle (in Korean),” Appl. Chem., 13 [2] 213-16 (2009).
  8. C.-C. Tsai and H. Teng, “Structural Features of Nanotubes Synthesized from NaOH Treatment on $TiO_2$ with Different Post-Treatments,” Chem. Mater., 18 [2] 367-73 (2006). https://doi.org/10.1021/cm0518527
  9. Jose’ A. Toledo-Antonio, “Low-Temperature FTIR Study of CO Adsorption on Titania Nanotubes,” J. Phys. Chem. C, 111 [29] 10799-805 (2007). https://doi.org/10.1021/jp0717443
  10. M.W. Raja, S. Mahanty, M. Kundu, and R.N. Basu, “Synthesis of Nanocrystalline $Li_{4}Ti_{5}O_{12}$ by a Novel Aqueous Combustion Technique,” J. Alloys Compounds, 468 [1-2] 258-62 (2009). https://doi.org/10.1016/j.jallcom.2007.12.072
  11. H. Yang, “Microwave Solid-state Synthesis of Spinel $Li_{4}Ti_{5}O_{12}$ Nanocrystallites as Anode Material for Lithiumion Batteries,” Solid State Ionics, 178 [29-30] 1590-94 (2007). https://doi.org/10.1016/j.ssi.2007.10.012
  12. Y.-J. Hao, Q.-Y. Lai, D.-Q. Liu, Z.-U. Xu, and X.-Y. Ji, “Synthesis by Citric Acid Sol-gel Method and Electrochemical Properties of $Li_{4}Ti_{5}O_{12}$ Anode Material for Lithium-ion Battery,” Mater. Chem. Phys., 94 [2-3] 382-87 (2005). https://doi.org/10.1016/j.matchemphys.2005.05.019
  13. H.W. Lu, W. Zeng, Y.S. Li, and Z.W. Fu, “Fabrication and Electrochemical Properties of Three-dimensional Net Architectures of Anatase $TiO_2$ and Spinel $Li_{4}Ti_{5}O_{12}$ Nanofibers,” J. Power Sources, 164 [2] 874-79 (2007). https://doi.org/10.1016/j.jpowsour.2006.11.009
  14. H. Ge, N. Li, D. Li, C. Dai, and D. Wang, “Electrochemical Characteristics of Spinel $Li_{4}Ti_{5}O_{12}$ Discharged to 0.01 V,” Electrochem. Commun., 10 [5] 719-22 (2008). https://doi.org/10.1016/j.elecom.2008.02.026
  15. J. Huang and Z. Jiang, “The Preparation and Characterization of $Li_{4}Ti_{5}O_{12}$/carbon Nano-tubes for Lithium Ion Battery,” Electrochimica Acta, 53 [26] 7756-59 (2008). https://doi.org/10.1016/j.electacta.2008.05.031
  16. T. Yuan, R. Cai, K. Wang, R. Ran, S. Liu, and Z. Shao, “Combustion Synthesis of High-performance $Li_{4}Ti_{5}O_{12}$ for Secondary Li-ion Battery,” Ceram. Int., 35 [5] 1757-68 (2009). https://doi.org/10.1016/j.ceramint.2008.10.010