DOI QR코드

DOI QR Code

Truncation Parameter Selection in Binary Choice Models

이항 선택 모형에서의 절단 모수 선택

  • Received : 20100400
  • Accepted : 20100800
  • Published : 2010.11.30

Abstract

This paper deals with a density estimation method in binary choice models that can be regarded as a statistical inverse problem. We use an orthogonal basis to estimate density function and consider the choice of an appropriate truncation parameter to reflect the model complexity and the prediction accuracy. We propose a data-dependent rule to choose the truncation parameter in the context of binary choice models. A numerical simulation is provided to illustrate the performance of the proposed method.

본 논문에서는 통계적 역문제로서 이항 선택모형에서의 밀도추정 방법에 대하여 연구하였다. 밀도함수의 추정을 위하여 직교열 기저를 이용하였으며, 모형의 복잡성과 예측의 정확성을 반영한 적절한 절단모수의 선택에 대하여 고려하였다. 이항 선택 모형에서 데이터에 의존하는 절단모수를 선택하는 방법에 대해 제안하고 모의실험, 실자료를 통해 제안한 방법의 성능을 규명하였다.

Keywords

References

  1. Athey, S., and Imbens, G.W. (2007). Discrete choice models with multiple unobserved choice characteristics, Preprint.
  2. Bajari, P., Fox, J. and Ryan, S. (2007). Linear regression estimation of discrete choice models with nonparametric distribution of random coefficients, American Economic Review, Papers and Proceedings, 97, 459–463.
  3. Chesher, A. and Santos Silva, J. M. C. (2002). Taste variation in discrete choice models, Review of Economic Studies, 69, 147–168.
  4. Dong, Y. (2010). Endogenous Regressor Binary Choice Models without Instruments, with an Application to Migration, Economics Letters, 107, 33–35.
  5. Efromovich, S. (1999). Nonparametric curve estimation: methods, theory and applications, Springer.
  6. Gautier, E. and Kitamura, Y. (2009). Nonparametric estimation in random coefficients binary choice models, Manuscript.
  7. Groemer, H. (1996). Geometric applications of fourier series and spherical harmonics, Cambridge University Press: Cambridge.
  8. Harding, M. C. and Hausman, J. (2007). Using a laplace approximation to estimate the random coefficients logit model by nonlinear least squares, International Economic Review, 48, 1311–1328.
  9. Healy, D. M., Hendriks, H. and Kim, P. T. (1998). Spherical deconvolution, Journal of Multivariate Analysis, 67, 1–22. https://doi.org/10.1006/jmva.1998.1757
  10. Healy, D. M. and Kim, P. T. (1996). An empirical Bayes approach to directional data and efficient computation on the sphere, The Annals of Statistics, 24, 232–254.
  11. Huh, J., Kim, P. T., Koo, J.-Y. and Park, J. H. (2004). Directional log-density estimation, Journal of the Korean Statistical Society, 33, 255–269.
  12. Kim, P. T. (1998). Deconvolution density estimation on SO(N). Annals of Statistics, 23, 1083–1102.
  13. Kim, P. T. and Koo, J.-Y. (2000). Directional mixture models and optimal estimation of the mixing density, The Canadian Journal of Statistics, 28, 383–398.
  14. Kim, P. T. and Koo, J.-Y. (2002). Optimal spherical deconvolution, Journal of Multivariate Analysis, 80, 21–42.
  15. Kim, P. T., Koo, J.-Y. and Park, H. J. (2004). Sharp minimaxity and sperical deconvolution for supersmooth error distributions, Journal of Multivariate Analysis, 90, 384–392.
  16. Koo, J.-Y. and Kim, P. T. (2005). Statistical inverse problems on manifolds, The Journal of Fourier Analysis and Applications, 11, 639–653.
  17. Koo, J.-Y. and Kim, P. T. (2008a). Asymptotic minimax bounds for stochastic deconvolution over groups, IEEE Transactions on Information Theory, 54, 289–298.
  18. Koo, J.-Y. and Kim, P. T. (2008b). Sharp adaptation for spherical inverse problems with applications to medical imaging, Journal of Multivariate Analysis, 99, 165–190.
  19. Train, K. E. (2003). Discrete choice methods with simulation, Cambridge University Press: Cambridge.