DOI QR코드

DOI QR Code

Molecular cloning and characterization of novel human JNK2 (MAPK9) transcript variants that show different stimulation activities on AP-1

  • Received : 2010.07.26
  • Accepted : 2010.09.28
  • Published : 2010.11.30

Abstract

The c-Jun $NH_2$-terminal kinase (JNK) signaling pathway participates in many physiological functions. In the current study we reported the cloning and characterization of five novel JNK2 transcript variants, which were designated as $JNK2\alpha3$, $JNK2\alpha4$, $JNK2\beta3$, $JNK2\gamma1$ and $JNK2\gamma2$, respectively. Among them, $JNK2\alpha4$ and $JNK2\gamma2$ are potential non-coding RNA because they contain pre-mature stop codons. Both $JNK2\alpha3$ and $JNK2\beta3$ contain an intact kinase domain, and both encode a protein product of 46 kDa, the same as those of $JNK2\alpha1$ and $JNK2\beta1$. $JNK2\gamma1$ contains a disrupted kinase domain and it showed a disable function. When over-expressed in mammalian cells, $JNK2\alpha3$ showed higher activity on AP-1 than that of $JNK2\beta3$ and $JNK2\gamma1$. Furthermore, $JNK2\alpha3$ and $JNK2\beta3$ showed different levels of substrate phosphorylation, although they both could promote the proliferation of 293T cells. Our results further demonstrate that JNK2 isoforms preferentially target different substrates and may regulate the expression of various target genes.

Keywords

References

  1. Weston, C. R. and Davis, R. J. (2007) The JNK signal transduction pathway. Curr. Opin. Cell Biol. 19, 142-149. https://doi.org/10.1016/j.ceb.2007.02.001
  2. Dhanasekaran, D. N. and Reddy, E. P. (2008) JNK signaling in apoptosis. Oncogene. 27, 6245-6251. https://doi.org/10.1038/onc.2008.301
  3. Davis, R. J. (2000) Signal transduction by the JNK group of MAP kinases. Cell 103, 239-252. https://doi.org/10.1016/S0092-8674(00)00116-1
  4. Bode, A. M. and Dong, Z. (2007) The functional contrariety of JNK. Mol. Carcinog. 46, 591-598. https://doi.org/10.1002/mc.20348
  5. Gupta, S., Barrett, T., Whitmarsh, A. J., Cavanagh, J., Sluss, H. K., Derijard, B. and Davis, R. J. (1996) Selective interaction of JNK protein kinase isoforms with transcription factors. EMBO J. 15, 2760-2770.
  6. Kallunki, T., Su, B., Tsigelny, I., Sluss, H. K., Derijard, B., Moore, G., Davis, R. and Karin, M. (1994) JNK2 contains a specificity-determining region responsible for efficient c-Jun binding and phosphorylation. Genes Dev. 8, 2996-3007. https://doi.org/10.1101/gad.8.24.2996
  7. Tsuiki, H., Tnani, M., Okamoto, I., Kenyon, L. C., Emlet, D. R., Holgado-Madruga, M., Lanham, I. S., Joynes, C. J., Vo, K. T. and Wong, A. J. (2003) Constitutively active forms of c-Jun NH2-terminal kinase are expressed in primary glial tumors. Cancer Res. 63, 250-255.
  8. Dreskin, S. C., Thomas, G. W., Dale, S. N. and Heasley, L. E. (2001) Isoforms of Jun kinase are differentially expressed and activated in human monocyte/macrophage (THP-1) cells. J. Immunol. 166, 5646-5653. https://doi.org/10.4049/jimmunol.166.9.5646
  9. Matlin, A. J., Clark, F. and Smith, C. W. (2005) Understanding alternative splicing: towards a cellular code. Nat. Rev. Mol. Cell Biol. 6, 386-398. https://doi.org/10.1038/nrm1645
  10. Wang, E. T., Sandberg, R., Luo, S., Khrebtukova, I., Zhang, L., Mayr, C., Kingsmore, S. F., Schroth, G. P. and Burge, C. B. (2008) Alternative isoform regulation in human tissue transcriptomes. Nature 456, 470-476. https://doi.org/10.1038/nature07509
  11. Wang, P., Yu, P., Gao, P., Shi, T. and Ma, D. (2009) Discovery of novel human transcript variants by analysis of intronic single-block EST with polyadenylation site. BMC Genomics. 10, 518. https://doi.org/10.1186/1471-2164-10-518
  12. McGlincy, N. J. and Smith, C. W. (2008) Alternative splicing resulting in nonsense-mediated mRNA decay: what is the meaning of nonsense? Trends. Biochem. Sci. 33, 385-393. https://doi.org/10.1016/j.tibs.2008.06.001
  13. Kyriakis, J. M. and Avruch, J. (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol. Rev. 81, 807-869.
  14. Pimienta, G., Ficarro, S. B., Gutierrez, G. J., Bhoumik, A., Peters, E. C., Ronai, Z. and Pascual, J. (2007) Autophosphorylation properties of inactive and active JNK2. Cell Cycle 6, 1762-1771. https://doi.org/10.4161/cc.6.14.4434
  15. Cui, J., Holgado-Madruga, M., Su, W., Tsuiki, H., Wedegaertner, P. and Wong, A. J. (2005) Identification of a specific domain responsible for JNK2alpha2 autophosphorylation. J. Biol. Chem. 280, 9913-9920. https://doi.org/10.1074/jbc.M412165200
  16. Jaeschke, A., Karasarides, M., Ventura, J. J., Ehrhardt, A., Zhang, C., Flavell, R. A., Shokat, K. M. and Davis, R. J. (2006) JNK2 is a positive regulator of the cJun transcription factor. Mol. Cell 23, 899-911. https://doi.org/10.1016/j.molcel.2006.07.028
  17. Nitta, R. T., Chu, A. H. and Wong, A. J. (2008) Constitutive activity of JNK2 alpha2 is dependent on a unique mechanism of MAPK activation. J. Biol. Chem. 283, 34935-34945. https://doi.org/10.1074/jbc.M804970200
  18. Shaulian, E. and Karin, M. (2002) AP-1 as a regulator of cell life and death. Nat. Cell Biol. 4, E131-136. https://doi.org/10.1038/ncb0502-e131
  19. Eferl, R. and Wagner, E. F. (2003) AP-1: a double-edged sword in tumorigenesis. Nat. Rev. Cancer 3, 859-868. https://doi.org/10.1038/nrc1209
  20. Wang, P., Shi, T. and Ma, D. (2006) Cloning of a novel human caspase-9 splice variant containing only the CARD domain. Life Sci. 79, 934-940. https://doi.org/10.1016/j.lfs.2006.04.026

Cited by

  1. Novel transcript variants of TRAIL show different activities in activation of NF-κB and apoptosis vol.89, pp.23-24, 2011, https://doi.org/10.1016/j.lfs.2011.09.003
  2. MicroRNA expression analysis during FK506-induced osteogenic differentiation in rat bone marrow stromal cells vol.16, pp.1, 2017, https://doi.org/10.3892/mmr.2017.6655
  3. JNK1 Protects against Glucolipotoxicity-Mediated Beta-Cell Apoptosis vol.9, pp.1, 2014, https://doi.org/10.1371/journal.pone.0087067
  4. Gene expression analysis of mammary tissue during fetal bud formation and growth in two pig breeds – indications of prenatal initiation of postnatal phenotypic differences vol.12, pp.1, 2012, https://doi.org/10.1186/1471-213X-12-13