DOI QR코드

DOI QR Code

Effect of Dietary Grape Pomace on Lipid Metabolism and Hepatic Morphology in Rats Fed a High Fat Diet

포도박이 고지방식이를 섭취한 흰쥐의 체내 지질대사와 간조직의 형태학적 변화에 미치는 영향

  • 장선화 (영남대학교 식품영양학과) ;
  • 최수경 (영남대학교 식품영양학과) ;
  • 서정숙 (영남대학교 식품영양학과)
  • Received : 2010.07.02
  • Accepted : 2010.10.11
  • Published : 2010.11.30

Abstract

The present study was conducted to investigate the effect of dietary grape pomace on lipid metabolism and hepatic morphology of rats fed a high fat diet. The high fat diet contained additional 15% lard to AIN 93-based diet. Male Sprague-Dawley rats were fed experimental diets containing 5% grape pomace for 4 weeks. Serum activities of glutamic-oxaloacetic transaminase (GOT) and glutamic-pyruvic transaminase (GPT) were not changed by high fat and grape pomace feeding. Serum concentration of triglyceride in rats fed a high fat diet was decreased significantly by dietary grape pomace. Hepatic concentrations of total lipid, total cholesterol and triglyceride were reduced in grape pomace groups with a high fat diet. Fecal concentrations of total cholesterol and triglyceride were increased in grape pomace groups with a high fat diet. The fecal content of coprostanol was not different among the groups. Dietary grape pomace increased the fecal excretion of cholesterol and coprostanone in rats fed a high fat diet. The fecal excretion of bile acid was not affected by feeding grape pomace in rats fed a high fat diet. Light micrographs of liver tissue revealed lipid droplets were increased by a high fat diet, but dietary supplementation of grape pomace tended to alleviate such changes.

본 연구에서는 포도박이 고지방식이를 섭취한 흰쥐의 지질대사에 미치는 영향을 조사함으로써 포도박의 생리활성과 자원화에 필요한 기초자료를 얻고자 하였다. Sprague-Dawley계 수컷 흰쥐 48마리를 정상식이 대조군(C), 정상식이에 포도박을 첨가한 군(CP), 고지방식이 대조군(HF), 고지방식이에 포도박을 첨가한 군(HFP)으로 나누어 4주간 실험식이를 급여한 후 간 기능 관련 효소, 혈청과 간조직 및 변 중의 지질 함량, 변으로 배설되는 중성 스테로이드와 담즙산 함량을 측정하였고 간조직의 형태학적 변화를 관찰하였다. 식이섭취량은 정상식이군(C, CP)에 비하여 고지방식이군(HF, HFP)이 유의적으로 적은 양을 섭취하였으며 식이효율은 고지방식이군에서 증가하였다. 체중증가량은 실험군 간에 유의적인 차이는 없었다. 간 기능을 나타내는 GOT와 GPT 활성은 대조군과 포도박을 첨가한 군 간의 유의적인 차이를 나타내지 않았다. 혈청 중의 총 콜레스테롤 함량은 고지방식이와 포도박 분말의 급여에 의한 상호작용을 나타내었으며, HDL-콜레스테롤 함량은 CP군이 C군보다 유의적으로 증가되었다. 중성지질과 LDL-콜레스테롤 함량은 정상식이군에서는 유의적인 차이가 없었지만 고지방식이군에서는 HF군에 비하여 HFP군이 유의적으로 감소하였다. 간조직 중의 총 지질 함량과 총 콜레스테롤 함량은 고지방식이와 포도박 분말의 급여에 따른 상호작용을 나타내었으며 중성지질 함량은 대조군에 비하여 포도박을 첨가한 군이 유의적으로 감소하였다. 인지질 함량은 고지방식이군에서는 유의적인 차이가 없었지만 정상식이 군에서는 C군에 비하여 CP군이 유의적으로 증가하였다. 변 중의 총 지질 함량은 C군에 비하여 CP군이 유의적으로 증가하였으며 총 콜레스테롤 함량은 HFP군이 HF군에 비하여 유의적으로 증가하였다. 변 중 중성지질 함량은 대조군에 비하여 포도박 첨가군에서 배설이 증가되었다. 변으로 배설되는 coprostanol 함량은 모든 실험군 간에 유의적인 차이를 나타내지 않았다. Cholesterol과 coprostanone 함량의 합은 정상식이군보다 고지방식이군이 유의적으로 증가하였고, 고지방식이군에서 HF군보다 HFP이 유의적으로 증가하였다. 담즙산의 함량은 HF군과 HFP군 간의 유의적인 차이가 없었지만 C군에 비하여 CP군이 유의적으로 증가하였다. 간조직의 형태학적 관찰결과를 보면 HF군의 간조직 표면이 심한 지방 침착으로 윤기와 탄력성이 저하되었다. HFP군에서는 세포질 내의 지방방울의 크기와 숫자는 유사하였으나 HF군에 비하여 지방세포 비대, 괴사 및 염증현상이 거의 관찰되지 않았다. 이상의 결과는 식이섬유와 폴리페놀 성분을 다량 함유한 포도박 식이는 혈청과 간조직의 지질 축적을 감소시키고 변으로 배설되는 지질 함량을 증가시켜 줌으로써 지질대사 관련한 만성질환의 예방효과를 가져올 수 있는 것으로 기대되었다. 포도박의 이러한 생리활성에 대한 연구결과는 향후 포도 가공중에 얻어지는 포도박 폐기물을 자원화 할 수 있는 기초자료로써 이용될 수 있다고 사료된다.

Keywords

References

  1. Statistics Korea. 2009. 2008 The annual report on the cause of death statistics.
  2. Bravo L. 1998. Polyphenols: chemistry, dietary sources, metabolism, and nutritional significance. Nutr Rev 56: 317-333. https://doi.org/10.1111/j.1753-4887.1998.tb01670.x
  3. Rice-Evans C. 2001. Flavonoid antioxidants. Curr Med Chem 8: 797-807. https://doi.org/10.2174/0929867013373011
  4. Iacopini P, Baldi M, Storchi P, Sebastiani L. 2008. Catechin, epicatechin, quercetin, rutin and resveratrol in red grape: content, in vitro antioxidant activity and interactions. J Food Compost Anal 21: 589-598. https://doi.org/10.1016/j.jfca.2008.03.011
  5. Han JY, Sung JH, Kim DJ, Jeong HS, Lee JS. 2008. Inhibitory effect of methanol extract and its fraction from grape seeds on mushroom tyrosinase. J Korean Soc Food Sci Nutr 37: 1679-1683. https://doi.org/10.3746/jkfn.2008.37.12.1679
  6. Park SJ, Lee HY, Oh DH. 2003. Free radical scavenging effect of seed and skin extracts from Campbell Early grape (Vitis labruscana B.). J Korean Soc Food Sci Nutr 32: 115-118. https://doi.org/10.3746/jkfn.2003.32.1.115
  7. USDA/ERS. 2003. Fruit and tree nuts situation and outlook yearbook.
  8. Maier T, Schieber A, Kammerer DR, Carle R. 2009. Residues of grape (Vitis vinifera L.) seed oil production as a valuable source of phenolic antioxidants. Food Chem 112: 551-559. https://doi.org/10.1016/j.foodchem.2008.06.005
  9. Monrad JK, Howard LR, King JW, Srinivas K, Mauromoustakos A. 2010. Subcritical solvent extraction of procyanidins from dried red grape pomace. J Agric Food Chem 58: 4014-4021. https://doi.org/10.1021/jf9028283
  10. Lu YR, Foo LY. 1999. The polyphenol constituents of grape pomace. Food Chem 65: 1-8. https://doi.org/10.1016/S0308-8146(98)00245-3
  11. Kammerer D, Claus A, Carle R, Schieber A. 2004. Polyphenol screening of pomace from red and white grape varieties (Vitis vinifera L.) by HPLC-DAD-MS/MS. J Agric Food Chem 52: 4360-4367. https://doi.org/10.1021/jf049613b
  12. Um MY, Kim MK. 2002. Effect of grape intakes on lipid metabolism of rats during aging. Korean J Nutr 35: 713-728.
  13. Chau CF, Chen CH, Wang YT. 2004. Effects of a novel pomace fiber on lipid and cholesterol metabolism in the hamster. Nutr Res 24: 337-345. https://doi.org/10.1016/j.nutres.2004.01.003
  14. Burton-Freeman B. 2000. Dietary fiber and energy regulation. J Nutr 130: 272S-275S. https://doi.org/10.1093/jn/130.2.272S
  15. Kurtz RC, Zhang ZF. 2001. Gastric cardia cancer and dietary fiber. Gastroenterology 120: 568-570. https://doi.org/10.1053/gast.2001.22365
  16. Sembries S, Dongowski G, Mehrlander K, Will F, Dietrich H. 2006. Physiological effects of extraction juices from apple, grape, and red beet pomace in rats. J Agric Food Chem 54: 10269-10280. https://doi.org/10.1021/jf0618168
  17. Perez-Jimenez J, Serrano J, Tabernero M, Arranz S, Diaz-Rubio ME, Garcia-Diz L, Goni I, Saura-Calixto F. 2008. Effects of grape antioxidant dietary fiber in cardiovascular disease risk factors. Nutrition 24: 646-653. https://doi.org/10.1016/j.nut.2008.03.012
  18. Philip GR, Forrest HN, George CF Jr. 2003. AIN-93 purified diets for laboratory rodents: Final report of the American Institute of Nutrition AdHoc Writing committee on the reformulation of the AIN-76A rodent diet. J Nutr 123: 1939-1951.
  19. Martin-Carron N, Goni I, Larrauri JA, Garcia-Alonso A, Saura-Cailxto F. 1999. Reduction in serum total and LDL cholesterol concentrations by a dietary fiber and polyphenol-rich grape product in hypercholesterolemic rats. Nutr Res 19: 1371-1381. https://doi.org/10.1016/S0271-5317(99)00094-9
  20. Hertog MGL, Feskens EJM, Hollman PCH, Katan MB, Kromhout D. 1993. Dietary antioxidant flavonoid and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342: 1007-1011. https://doi.org/10.1016/0140-6736(93)92876-U
  21. Hertog MGL, Kromhout D, Aravanis C, Blackburn H, Buzina R, Fidanza F, Giampaoli S, Jansen A, Menotti A, Nedeljkovic S, Pekkarinen M, Simic BS, Toshima H, Feskens EJM, Hollman PCH, Katan MB. 1995. Flavonoid intake and longterm risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155: 381-386. https://doi.org/10.1001/archinte.155.4.381
  22. Hollman PCH, Katan MB. 1999. Dietary flavonoids: Intake, health effects and bioavailability. Food Chem Toxicol 37: 937-942. https://doi.org/10.1016/S0278-6915(99)00079-4
  23. Ross JA, Kasum CM. 2002. Dietary flavonoids: bioavailability metabolic effects, and safety. Annu Rev Nutr 22: 19-34. https://doi.org/10.1146/annurev.nutr.22.111401.144957
  24. Friedewald WT, Levy RI, Fedreison DS. 1979. Estimation of concentration of low density lipoprotein cholesterol in plasma without use of the preparative ultracentrifuge. Clin Chem 18: 499-502.
  25. Folch J, Mec L, Stanly GSH. 1957. A simple method for the isolation and purification of total lipid from animal tissues. J Biol Chem 226: 497-509.
  26. Medez J, Frinklin B, Gahagen F. 1975. Sample manual procedure for determination of serum triglycerides. Clin Chem 21: 768-774.
  27. Zlatkis A, Zak B. 1969. Study of new cholesterol reagent. Anal Biochem 29: 143-150. https://doi.org/10.1016/0003-2697(69)90017-7
  28. Eng LF, Noble EP. 1968. The maturation of rat brain myelin. Lipid 3: 157-162. https://doi.org/10.1007/BF02531734
  29. Crowell MJ, Macdonald IA. 1980. Enzymic determination of $3\alpha-,\;7\alpha-,\;and\;12\alpha$-hydroxyl groups of fecal bile salts. Clin Chem 26: 1298-1300.
  30. Yunoki K, Sasaki G, Tokuji Y, Kinoshita M, Naito A, Aida K, Ohnishi M. 2008. Effect of dietary wine pomace extract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis. J Agric Food Chem 56: 12053-12058.
  31. Chung KH, Cho SH, Sin EN, Choi KH, Choi YS. 1988. Effects of alcohol consumption and fat content in diet on chemical composition and morphology of liver in rat. Korean J Nutr 21: 154-163.
  32. Martin-Carron N, Saura-Cailxto F, Goni I. 2000. Effect of dietary fiber and polyphenol-rich grape product on lipidaemia and nutritional parameters in rats. J Sci Food Agric 80: 1183-1188. https://doi.org/10.1002/1097-0010(200006)80:8<1183::AID-JSFA617>3.0.CO;2-G
  33. Auger C, Teissedre PL. Gerain P, Lequeux N, Bornet A, Serisier S, Besancon P, Caporiccio B, Cristol JP, Rouanet JM. 2005. Dietary wine phenolics catechin, and resveratrol efficiently protect hypercholesterolemic hamsters against aortic fatty streak accumulation. J Agric Food Chem 53: 2015-2021. https://doi.org/10.1021/jf048177q
  34. Yunoki K, Saaki G, Tokuji Y, Kinoshita M. 2008. Effect of dietary wine pomace extract and oleanolic acid on plasma lipids in rats fed high-fat diet and its DNA microarray analysis. J Agric Food Chem 56: 12052-12058. https://doi.org/10.1021/jf8026217
  35. Bobek P. 1999. Dietary tomato and grape pomace in rat: effect on lipid in serum and liver, and on antioxidant status. Br J Biomed Sci 56: 109-113.
  36. Lee JK. 2008. Effect of grape pomace diet on lipid metabolism related to obesity in rats. MS Thesis. Yeungnam University, Gyeongsan, Korea.
  37. Cho YS, Yang EM, Jang SM, Chun MS, Shon MY, Kim MJ, Lee MK. 2009. Effect of grape seed water extract on lipid metabolism and erythrocyte antioxidant defense system in high-fat diet-induced obese C57BL/6 mice. J Korean Soc Food Sci Nutr 36: 1537-1543. https://doi.org/10.3746/jkfn.2007.36.12.1537
  38. Park BS, Seong KS, Yoon CS, Hwangbo J, Lee HW, Lee NH, Rhee YC. 1992. Effect of dietary $\omega$-PUFA on cholesterol synthesis and steroid excretion in rats. Kor J Anim Nutr Feed 16: 283-290.
  39. Kang HJ, Song YS. 1997. Dietary fiber and cholesterol metabolism. J Korean Soc Food Sci Nutr 26: 358-369.
  40. Sembries S, Dongowski G, Mehrlander K, Will F, Dietrich H. 2004. Dietary fiber-rich colloids from apple pomace extraction juices do not affect food intake and blood serum lipid levels, but enhance fecal excretion of steroids in rats. J Nutr Biochem 15: 296-302. https://doi.org/10.1016/j.jnutbio.2003.12.005
  41. Miura D, Miura Y, Yagasaki K. 2003. Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and wine, in hepatoma-bearing rats. Life Sci 73: 1393-1400. https://doi.org/10.1016/S0024-3205(03)00469-7
  42. Bravo L, Abia R, Eastwood M, Saura-Calixto F. 1994. Degradation of polyphenols (catechin and tannic acid) in the rat intestinal tract. Effect on colonic fermentation and faecal output. Br J Nutr 71: 933-946. https://doi.org/10.1079/BJN19940197
  43. Tebib K, Besancon P, Rouanet JM. 1994. Dietary grape seed tannins affect lipoproteins, lipoprotein lipases and tissue lipids in rats fed hypercholesterolemic diets. J Nutr 124: 2451-2451. https://doi.org/10.1093/jn/124.12.2451
  44. Feillet-Coudray C, Sutra T, Fouret G, Ramos J, Wrutniak-Cabello C, Cabello G, Cristol JP, Coudray C. 2009. Oxidative stress in rats fed a high-fat high-sucrose diet and preventive effect of polyphenol: Involvement of mitochondrial and NAD(P)H oxidase systems. Free Radic Biol Med 46: 624-632. https://doi.org/10.1016/j.freeradbiomed.2008.11.020

Cited by

  1. Antioxidant activity and hepatic lipids improvement effects of Rubus coreanus in high-fat diet-fed rats vol.38, pp.2, 2015, https://doi.org/10.7853/kjvs.2015.38.2.117
  2. The Effect of Insoluble Dietary Fiber Extracted from Chinese Cabbage Waste on Plasma Lipid Profiles in Rats Fed a High Fat Diet vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.033
  3. Anti-obesity Effect of Hypsizigus marmoreus in High Fat-fed Mice vol.40, pp.12, 2011, https://doi.org/10.3746/jkfn.2011.40.12.1708
  4. Cherry Silverberry (Elaeagnus multiflora) Wine Mitigates the Development of Alcoholic Fatty Liver in Rats vol.41, pp.1, 2012, https://doi.org/10.3746/jkfn.2012.41.1.057
  5. Quality Characteristics and Antioxidant Activities of Chocolate Added with Mulberry Pomace vol.28, pp.4, 2012, https://doi.org/10.9724/kfcs.2012.28.4.479