DOI QR코드

DOI QR Code

Effects of Design Parameters on Structural Performance of Precast Piers with Bonded Prestressing Steels

부착 긴장재를 가진 조립식 교각 설계변수의 구조성능에 미치는 영향

  • 심창수 (중앙대학교 건설환경공학과) ;
  • 윤재영 (중앙대학교 토목환경공학과)
  • Received : 2009.09.24
  • Accepted : 2009.11.24
  • Published : 2010.02.28

Abstract

Quasi-static tests were conducted to evaluate structural performance of precast piers prestressed by bonded prestressing steels. Combinations of prestressing bars and normal reinforcing bars, embedded steel tubes and prestressing strands were used as continuous steels crossing the joints of a precast pier. Main design parameters were steel ratio, magnitude of prestress force, and section details. Flexural strength and energy dissipation capacity of precast columns with higher steel ratio showed better performance due to continuous steels after opening of the joints. Precast piers with embedded members showed stable behavior after reaching maximum loads resulting in higher displacement ductility and energy dissipation capacity increased as the introduced prestress increased. Self-centering behavior at early stages and stress increase of confining reinforcements were observed from highly prestressed columns. Combination of prestressing steels and normal reinforcing bars should be used in design to prevent rapid strength degradation after reaching the maximum load.

부착 긴장재를 이용한 프리스트레스를 도입하는 조립식 교각의 구조 성능을 평가하기 위한 준정적 실험을 수행하였다. 프리캐스트 교각의 이음부를 가로질러 축방향으로 연속배치되는 강재로 강봉과 일반철근, 매입강관과 강연선의 조합을 선택하였다. 주요 설계 변수는 강재량, 프리스트레스의 수준, 단면 상세로 하였다. 이음부 벌어짐 이후에 연속 강재가 하중을 모두 부담하여 응력의 증감을 일으키는데 강재비가 높을수록 휨강도가 높게 나타나고 에너지 소산능력도 현저하게 증가하였다. 매입강재를 갖는 프리캐스트 교각은 최대하중 이후의 거동이 안정적으로 나타나 높은 변위연성도를 나타내었고 프리스트레스 증가에 따른 에너지 소산능력의 증가도 나타내었다. 프리스트레스의 수준이 높을수록 초기 변형 회복능력이 양호하게 나타났고 횡철근의 응력증가도 크게 나타났다. 조립식 교각의 최대하중 도달 이후의 강도 저하가 급격하게 발생하지 않도록 긴장재와 일반강재의 조합을 결정하여야 한다.

Keywords

References

  1. 김태훈, 박세진, 김영진, 신현목(2008) P-delta 영향을 고려한 프리캐스트 세그먼트 PSC 교각의 성능평가. 한국지진공학회 논문집, 한국지진공학회, 제12권, 제4호, pp. 45-54.
  2. 김현호, 심창수, 정철헌, 김철환(2007) 중실원형단면 조립식 교각의 내진성능평가, 한국지진공학회 논문집, 한국지진공학회, 제11권, 제3호, pp. 23-31.
  3. 심창수(2005) 국내외 교량의 급속시공 관련 동향분석, 대한토목학회지, 대한토목학회, 제53권, 제12호, pp. 39-46.
  4. Billington, S.L., Barnes, R.W., and Breen, J.E. (1998) Project summary report 1410-2F: A Precast substructure design for standard bridge systems, Center for Transportation Research, The University of Texas at Austin.
  5. Billington, S.L., Barnes, R.W., and Breen, J.E. (1999) A precast segmental substructure system for standard bridges, PCI Journal, Vol. 44, No. 4, August, pp. 56-73.
  6. Billington, S.L, Barnes, R.W., and Breen, J.E. (2001) Alternate substructure systems for standard highway bridges, ASCE Journal of Bridge Engineering, Vol. 6, No. 2, pp. 87-94. https://doi.org/10.1061/(ASCE)1084-0702(2001)6:2(87)
  7. Billington, S.L. and Yoon, J.K. (2004) Cyclic response of unbonded post-tensioned precast columns with ductile fiber-reinforced concrete, ASCE Journal of Bridge Engineering, Vol. 9, No. 4, pp. 353-363. https://doi.org/10.1061/(ASCE)1084-0702(2004)9:4(353)
  8. El-Sheikh, M.T., Sause, R., Pessiki, S., and Lu, L. (1999) Seismic behavior and design of unbonded post-tensioned precast concrete frames, PCI Journal, Vol. 44, No. 3, pp. 54-71. https://doi.org/10.15554/pcij.05011999.54.71
  9. Gad, E.F, Chandler, A.M., Duffield, C.F., and Hutchinson, G.L. (1999) Earthquake ductility and overstrength in residential structures," Structural Engineering and Mechanics, Vol. 8, No. 4, pp. 361-382. https://doi.org/10.12989/sem.1999.8.4.361
  10. Hewes, J.T. and Priestly, M.J.N. (2001) Proceedings, sixth CALTRANS Seismic research workshop, division of engineering services, California Department of Transportation, Sacramento, CA.
  11. Hieber, D.G., Wacker, J.M., Eberhard, M.O., and Stanton, J.F. (2005a) State-of-the art on precast concrete systems for rapid construction of bridges. Technical report contract T2659, Task 53. Washington State Transportation Commission; March.
  12. Hieber, D.G., Wacker, J.M., Eberhard, M.O., and Stanton, J.F., (2005b) Precast oncrete pier systems for rapid construction of bridges in seismic regions, washington state department of transportation technical Report WA-RD 611.1, Olympia, Washington.
  13. Jonsson, R. (2002) Direct displacement based design of seismic moment resisting concrete frames, master's thesis, department of civil and environmental engineering, University of Washington.
  14. Kwan, W. and Billington, S.L. (2003a) Unbonded posttensioned concrete bridge Piers. I: monotonic and cyclic analyses", ASCE Journal of Bridge Engineering, Vol. 8, No. 2, pp. 92- 101. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:2(92)
  15. Kwan, W. and Billington, S.L. (2003b) Unbonded posttensioned concrete bridge Piers. II: Seismic analyses, ASCE Journal of Bridge Engineering, Vol. 8, No. 2, pp. 102-111. https://doi.org/10.1061/(ASCE)1084-0702(2003)8:2(102)
  16. Mandawe, J., Mislinski, S., and Matsumoto, E.E. (2002), Reinforcement anchorage in grouted duct connections for a precast bent cap system in seismic regions, Proceedings, Concrete Bridge Conference, Nashville, TN.
  17. Matsumoto, E.E., Kreger, M.E., Waggoner, M.C., and Sumen, G. (2002) Grouted connection tests in development of precast bent cap systems, Transportation Research Record 1814, Transportation Research Board, Washington DC, pp. 55-64.
  18. Nishiyama, M. and Watanabe, F. (2003) Seismic performance of precast column-foundation connection assembled by post-tensioning, advanced materials for construction of bridges, Buildings, and Other Structures III, Vol. P5, Article 5.
  19. Priestley, M.J.N. and Tao, J.R. (1993) Seismic response of precast prestressed concrete frames with partially debonded tendons, PCI Journal, Vol. 38, No. 1, pp. 64-81.
  20. Priestley, M.J.N. and MacRae, G.A. (1996) Seismic tests of precast beam-to-column joint subassemblages with unbonded tendons, PCI Journal, Vol. 41, No. 1, pp. 64-81.
  21. Sakai, J. and Mahin, S.A. (2004) Mitigation of residual displacements of circular reinforced concrete bridge columns, proceedings, 13th World Conference on Earthquake Engineering, Vancouver, B.C.
  22. Shahawy, M.A. (2003) NCHRP Synthesis 324: Prefabricated Bridge Elements and Systems to Limit Traffic Disruption During Construction, national cooperative highway research program, Transportation Research Board, Washington, DC.
  23. Shim C.S., Chung C.H., and Kim H.H. (2008) Experimental evaluation of seismic performance of precast segmental bridge piers with a circular solid section, Engineering Structures, Vol. 30, No. 12, pp. 3782-3792. https://doi.org/10.1016/j.engstruct.2008.07.005
  24. Shim C.S., Chung Y.S., and Han J.-H. (2008) Cyclic response of concrete-encased composite columns with low steel ratio, Structures and Buildings, Proc. of the Institution of Civil Engineers, Vol. 161, Issue SB2, pp. 77-89.
  25. Stanton, J.F. and S.D. Nakaki (2002) Design guidelines for precast concrete seismic structural Systems (PRESSS Report No. 01/ 03-09), University of Washington.
  26. Wacker, J.M., Hieber, D.G., Stanton, J.F. and Eberhard, M.O. (2005) Design of precast concrete piers for rapid bridge construction in seismic regions, WA-RD 629.1, Washington State Transportation Center, University of Washington.