DOI QR코드

DOI QR Code

Comparisons of the Pan and Penman Evaporation Trends in South Korea

우리나라 증발접시 증발량과 Penman 증발량 추세 비교분석

  • 임창수 (경기대학교 토목공학과)
  • Received : 2010.04.09
  • Accepted : 2010.07.22
  • Published : 2010.10.31

Abstract

The effects of geographical and climatic factors on annual and monthly pan and Penman evaporation were analyzed. 52 climatological stations were selected and trend analyses were performed. Furthermore, cluster analysis and multiple linear regression analysis were performed to understand the effects of geographical and climatic factors on pan and Penman evaporation. Based on stepwise multiple linear regression analysis, annual pan evaporation is proved to be mainly controlled by urbanization as geographical factor, and annual pan evaporation is also controlled by temperature, relative humidity, wind speed, and solar radiation as climatic factor. Especially wind speed is considered to be most significant climatic factor which affects pan evaporation. Meanwhile, Penman evaporation is not affected by geographical factors but it is affected by climate factors such as temperature, relative humidity, wind speed, and solar radiation except precipitation. Furthermore, the study results show that only proximity to coast affects pan evaporation trend on July; however, geographical and climatic factors do not affect pan evaporation trends in annual basis and monthly basis (January, April, and October). On the other hand, Penman evaporation trends were not affected by geographical factors in annual and monthly basises.

본 연구에서는 연 및 월별 기후요소와 지역특성이 증발접시 증발량과 Penman 증발량에 미치는 영향 차이를 분석하였다. 이를 위하여 우리나라 전국 52개 기상관측지점에서 관측된 연 및 월별 기후자료를 수집하여 추세분석을 실시하였고, 다변량 회귀분석 등을 실시하여 연구지역의 지리적 요소와 기후요소가 증발접시 및 Penman 증발량에 미치는 영향을 비교분석하였다. 단계입력방식의 다변량회귀분석 결과에 의하면 년별 증발접시 증발량의 경우 지리적 요소로서 도시화율이, 기후요소로서 기온, 습도, 풍속, 일사량 등이 포함되어 이들 지리적 및 기후요소의 영향을 받는 것으로 나타났고, 풍속에 의해서 가장 큰 영향을 받는 것으로 나타났다. 한편 Penman 증발량은 지리적 요소가 회귀식에 포함되지 않아서 지리적 요소의 영향을 받지 않는 것으로 나타났으나, 강수량을 제외한 다른 기후요소(기온, 습도, 풍속, 일사량)가 회귀식에 포함되어 이들 기후요소에 의해서 유의한 수준에서 영향을 받는 것으로 나타났다. 특히 풍속에 의해서 가장 큰 영향을 받는 것으로 나타났다. 또한 증발접시 증발량 추세의 경우 7월에 지리적 요소로서 해안근접성이 회귀식에 포함되어 증발접시 증발량 추세에 영향을 미치는 것으로 나타났지만 연별 및 다른 계절에서는 지리적 요소 및 기후요소가 회귀식에 포함되지 않아서 증발접시 증발량 추세에 큰 영향을 미치지 않는 것으로 나타났다. 한편 Penman 증발량 추세는 년별 및 월별 모두에서 지리적 요소가 회귀식에 포함되지 않아서 이들 지리적 요소에 의해서 영향을 받지 않는 것으로 나타났다.

Keywords

References

  1. 김광섭, 임태경(2005) 도시화 등 환경변화에 따른 지역기후변화 특성 분석, 2005년 한국수자원학회 학술발표회 논문집, 한국수자원학회.
  2. 김광섭, 임태경(2006) 1973년부터 2004년까지의 관측된 대형증발량 자료 분석, 대한토목학회논문집, 대한토목학회, 제26권 제6B호, pp. 583-396.
  3. 임창수, 채효석(2007) 도시화에 따른 수문기후변화와 II(도시화가 기준 증발산량에 미치는 영향), 한국수자원학회논문집, 한국수자원학회, 제40권 제7호, pp. 571-583.
  4. 정대일, 강재원(2009) 증발량 관련 기후인자와 팬증발량의 변화 분석, 한국수자원학회논문집, 한국수자원학회, 제42권 제2호, pp. 117-129. https://doi.org/10.3741/JKWRA.2009.42.2.117
  5. Adebayo, Y. (1991) Heat island in a humid tropical city and its relationship with potential evaporation, Theor. Appl. Climatology, Vol. 43, pp. 137-147. https://doi.org/10.1007/BF00867471
  6. Balling, R.C. and Brazel, S.W. (1987) Diurnal variation in Arizona monsoon precipitation friquencies, Mon. Wea. Rev. Vol. 115, pp. 342-346. https://doi.org/10.1175/1520-0493(1987)115<0342:DVIAMP>2.0.CO;2
  7. Bornstein, R. and Johnson, D.S. (1977) Urban-rural wind velocity differences, Atmospheric Environment, Vol. 11, pp. 597-604. https://doi.org/10.1016/0004-6981(77)90112-3
  8. Brutsaert, W. and Palange, M.B. (1998) Hydrological cycle explains the evaporation paradox, Nature, Vol. 396, pp. 30. https://doi.org/10.1038/23845
  9. Burn, D.H. and Hesch, N.M. (2006) Trends in evapotranspiration for the Canadian Prairies, J. of Hydrology, Vol. 336, pp. 61-73.
  10. Chattopadhyay N. and Hulme, M (1997) Evaporation and potential evapotranspiration in India under conditions of recent and future climate change, Agricultural and Forest Meteorology, Vol. 87, pp. 55-74. https://doi.org/10.1016/S0168-1923(97)00006-3
  11. Chow, S.D. (1992) The urban climate of Shanghai, Atmospheric Environment, Vol. 26B, No. 1, pp. 9-15.
  12. Cohen, S., Ianetz, A., and Stanhill, G. (2002) Evaporative climate changes at Bet Dagan, Israel, 1964-1998, Argic. For. Meteorol., Vol. 111, pp. 83-91.
  13. Dow, C.L. and DeWall, D.R. (2000) Trends in evaporation and Bowen ration on urbanizing watersheds in eastern United States, Water Resources Research, Vol. 36, No. 7, pp. 1835-1843. https://doi.org/10.1029/2000WR900062
  14. Golubev, V.S., Lawrimore, J.H., Groisman, P.Y., Speranskaya, N.A., Zhuravin, S.A., Menne, M.J., Peterson, T.C., and Malone, R.M. (2001) Evaporation changes over the contiguous United States and the former USSR: A reassessment, Geophys. Res. Lett. Vol. 28, pp. 2665-2668. https://doi.org/10.1029/2000GL012851
  15. Hobbins, M.T., Ramirez, J.A., and Brown, T.C. (2004) Trends in pan evaporation and actual evapotranspiration across the conterminous U.S.: Paradoxical or complimentary? Geophysical Research Letters, Vol. 31, pp. 1-5.
  16. IPCC (2007) Climate change 2007: the physical science basis. Contributions of Working Group I to the fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge
  17. Jauregui, E. and Luyando, E. (1998) Long-term association between pan evaporation and the urban heat island in Mexico City, Atmosfera, Vol. 11, pp. 45-60.
  18. Lawrimore, J.H. and Peterson, T.C. (2000) Pan evaporation trends in dry and humid regions of United States, J. Hydrometeorol., Vol. 1, pp. 543-546. https://doi.org/10.1175/1525-7541(2000)001<0543:PETIDA>2.0.CO;2
  19. Linacre, E.T. (1993) Data sparse estimation of potential evapotranspiration using a simplified Penman equation. Agric. Forest Meteorol. Vol. 64, pp. 225-237.
  20. Liu B., Xu, M., Henderson, M., and Gong, W. (2004) A spatial analysis of pan evaporation trends in China, 1955-2000, J. of Geophysical Research, Vol. 109, No. D15: D15102, doi: 10.1029/2004JD004511.
  21. McKenny, M.S. and Rosenberg, N.J. (1993) Sensitivity of some potential evapotranspiration estimation methods to climate change, Agricultural and Forest Meteorology, Vol. 64, pp. 81-110. https://doi.org/10.1016/0168-1923(93)90095-Y
  22. Ozdogan, M. and Salvucci, G.D. (2004) Irrigation induced changes in potential evapotranspiration in southeastern Turkey: Test and application of Bouchet's complimentary hypothesis, Water Resources Research, Vol. 40, W04301 doi:10.1029/2003WR002822.
  23. Penman, H.L. (1948) Natural evaporation from open water, bare soil, and grass. Proc. Roy. Soc. London, Vol. A193, pp. 120-146.
  24. Peterson, T.C., Golubev, V.S., and Groisman, P.Y. (1995) Evaporation losing its strength, Nature, Vol. 377, pp. 687-688.
  25. Ramirez, J.A. and Hobbins, M.T. (2005) Observational evidence of the complementary relationship in regional evaporation lends strong support for Bouchet's hypothesis, Geophysical Research Letters, Vol. 32, L15401, doi:10.1029/2005GL023549.
  26. Roderick M.L. and Farquhar G.D. (2002) The cause of decreased pan evaporation over the past 50 years, Science, Vol. 298, pp. 1410-1411.
  27. Sen, P.K. (1968) Estimates of the regression coefficient based on Kendall's tau, Journal of the American Statistical Association, Vol. 63, pp. 1379-1389. https://doi.org/10.2307/2285891
  28. Valiantzas, J.D. (2006) Simplified versions for the Penman evaporation equation using routine weather data. J. of Hydrology, Vol. 331, pp. 690-702. https://doi.org/10.1016/j.jhydrol.2006.06.012
  29. Yague, C., Zurita, E. and Martinez, A. (1991) Statistical analysis of the Madrid urban heat island, Atmospheric Environment, Vol. 25B, No. 3, pp. 327-332.