DOI QR코드

DOI QR Code

Revisiting Horton Index Using a Conceptual Soil Water Balance Model

개념적인 토양수분수지 모형을 이용한 Horton 지수의 재논의

  • Received : 2010.05.31
  • Accepted : 2010.06.27
  • Published : 2010.10.31

Abstract

In this study, the variability of the Horton index which is ratio of vaporization and wetting water is investigated using a conceptual soil water balance model. From the proposed model, the steady-state soil water probabilistic density function is derived through meteorological and watershed characteristics and then the sensitivity of Horton index to the precipitation occurrence rate and the mean of wet day precipitation is examined. As a result, the inter-annual variability of the Horton index is lower than that of precipitation and they showed the strong negative correlation. It is also shown that although precipitation is not varied, the Horton index can be varied due to the fluctuation of the precipitation occurrence rate and the mean of wet day precipitation. In addition, it is presented that there is a non-linear relationship which has a critical point switching proportional or inverse relationship between the Horton index and two main characteristics of precipitation process.

본 연구에서는 개념적인 토양수분수지 모형을 구성하여 유역에서의 물의 기화량과 유역의 습윤량의 비인 Horton 지수의 변동성을 살펴보고 있다. 제안된 모형으로부터 다양한 수문기상학적 변수들 및 유역 특성변수를 반영한 토양수분 확률밀도함수가 유도되며, 강수현상을 구성하는 두 가지 주요 인자인 강수발생빈도와 우기일의 평균 강수량의 변화에 따른 Horton지수의 민감도가 탐색된다. 수치모의결과를 통하여 Horton 지수는 강수량의 연간변동성보다 약 절반가량 낮았으며 둘 사이에는 강한 역 상관관계가 있음을 살펴볼 수 있다. 또한 강수량이 일정하더라도 강수발생빈도와 우기일 강수량 평균에 따라 서로 다른 Horton 지수를 가질 수 있음이 보여진다. 마지막으로 Horton 지수와 강수 프로세스를 구성하는 두 가지 주요 성분과는 어떤 한계점을 기준으로 비례/반비례 관계가 전환되는 비선형적인 관계를 가지고 있음을 살펴볼 수 있다.

Keywords

References

  1. Adams, H.D., Guardiola-Claramonte, M., Barron-Gafford, G. A., Villegas, J.C., Breshears, D.D., Zou, C.B., Troch, P.A., and Huxman, T.E. (2009) Temperature sensitivity of droughtinduced tree mortality: implications for regional die-off under global-change-type drought. Proceedings of the National Academy of Sciences of the USA, Vol. 106, pp. 7063-7066. https://doi.org/10.1073/pnas.0901438106
  2. Allen, C.D. and Breshears, D.D. (1998) Drought-induced shift of a forestwoodland ecotone: rapid landscape response to climate variation. Proceedings of the National Academy of Sciences of the USA, Vol. 95. pp. 14839-14842. https://doi.org/10.1073/pnas.95.25.14839
  3. Barnett, T.P., Adam, J.C., and Lettenmaier, D.P. (2005) Potential impacts of a warming climate on water availability in snow-dominated regions. Nature, Vol. 438, pp. 303-309. https://doi.org/10.1038/nature04141
  4. Beven, K. (2006) Benchmark Papers in Storm Runoff Generation. IAHS Press, Wallingford, UK.
  5. Breshears, D.D., Cobb, N.S., Rich, P.M., Price, K.P., Allen, C.D., Balice, R.G., Romme, W.H., Kastens, J.H., Floyd, M.L., Belnap, J., Anderson, J.J., Myers, O.B., and Meyer, C.W. (2005) Regional vegetation die-off in response to global-change-type drought. Proceedings of the National Academy of Sciences of the USA, Vol. 102, pp. 15144-15148. https://doi.org/10.1073/pnas.0505734102
  6. Budyko, M.I. (1974) Climate and life. Academic, New York.
  7. Dai, A.G., Trenberth, K.E., and Qian, T.T. (2004) A global dataset of Palmer Drought Severity Index for 1870-2002: relationship with soil moisture and effects of surface warming. Journal of Hydrometeorology, Vol. 5, pp. 1117-1130. https://doi.org/10.1175/JHM-386.1
  8. Donohue, R.J., Roderick, M.L., and McVicar, T.R. (2007) Vegetation dynamics and Budyko' hydrological model. Hydrology and Earth System Sciences, Vol. 11, pp. 983-995. https://doi.org/10.5194/hess-11-983-2007
  9. Horton, R.E. (1933) The role of infiltration in the hydrologic cycle. Transactions of the American Geophysical Union. Vol. 14, pp. 446-460. https://doi.org/10.1029/TR014i001p00446
  10. Hurkmans, R.T.W.L., Terink, W., Uijlenhoet, R., Moors, E.J., Troch, P.A., and Verburg, P.H. (2009) Effects of land use changes on stream flow generation in the Rhine basin. Water Resources Research, Vol. 45, W06405, DOI:10.1029/2008WR007574.
  11. Huxman, T.E., Smith, M.D., Fay, P.A., Knapp, A.K., Shaw, M.R., Loik, M.E., Smith, S.D., Tissue, D.T., Zak, J.C., Weltzin, J.F., Pockman, W.T., Sala, O.E., Haddad, B.M., Harte, J., Koch, G.W., Schwinning, S., Small, E.E., and Williams, D.G. (2004) Convergence across biomes to a common rain use efficiency. Nature, Vol. 429, pp. 651-654. https://doi.org/10.1038/nature02561
  12. Jackson, R.B., Carpenter, S.R., Dahm, C.N., McKnight, D.M., Naiman, R.J., Postel, S.L., and Running, S.W. (2001) Water in a changing world. Ecological Applications, Vol. 11, pp. 1027-1045. https://doi.org/10.1890/1051-0761(2001)011[1027:WIACW]2.0.CO;2
  13. Jackson, R.B., Sperry, J.S., and Dawson, T.E. (2000) Root water uptake and transport: using physiological processes in global predictions. Trends in Plant Science, Vol. 5, pp. 482-488. https://doi.org/10.1016/S1360-1385(00)01766-0
  14. Kim, S., Han, S., and Kavvas, M.L. (2008) Analytical derivation of steady-state soil water probability density function coupled with simple stochastic point rainfall model, ASCE Journal of Hydrologic Engineering, Vol. 13, pp. 1069-1077. https://doi.org/10.1061/(ASCE)1084-0699(2008)13:11(1069)
  15. Milly, P.C.D., Wetherald, R.T., Dunne, K.A., and Delworth, T.L. (2002) Increasing risk of great floods in a changing climate. Nature, Vol. 415, pp. 514-517. https://doi.org/10.1038/415514a
  16. Porporato, A., Laio, F., Ridolfi, L., and Rodriguez-Iturbe, I. (2001) Plants in water-controlled ecosystems: Active role in hydrologic processes and response to water stress. III. Vegetation water stress. Advanced in Water Resources, Vol. 24, pp. 725-744. https://doi.org/10.1016/S0309-1708(01)00006-9
  17. Rinehart, A.J., Vivoni, E.R., and Brooks, P.D. (2008) Effects of vegetation, albedo and radiation sheltering on the distribution of snow in the Valles Caldera, New Mexico. Ecohydrology, Vol. 1, pp. 253-270. https://doi.org/10.1002/eco.26
  18. Rodriguez-Iturbe, I. and Porporato, A. (2004) Ecohydrology of Water-Controlled Ecosystems. Cambridge University Press, New York.
  19. Scanlon, B.R., Levitt, D.G., Reedy, R.C., Keese, K.E., and Sully, M.J. (2005) Ecological controls on water-cycle response to climate variability in deserts. Proceedings of the National Academy of Sciences of the USA, Vol. 102, pp. 6033-6038. https://doi.org/10.1073/pnas.0408571102
  20. Schimel, D.S., Braswell, B.H., and Parton, W.J. (1997) Equilibration of the terrestrial water, nitrogen, and carbon cycles. Proceedings of the National Academy of Sciences of the USA, Vol. 94, pp. 8280-8283. https://doi.org/10.1073/pnas.94.16.8280
  21. Schenk, H.J. and Jackson, R.B. (2002) The global biogeography of roots. Ecological Monographs, Vol. 72, pp. 311-328. https://doi.org/10.1890/0012-9615(2002)072[0311:TGBOR]2.0.CO;2
  22. Troch, P.A., Martinezl, G.F., Pauwels, V.R.N., Durcik, M., Sivapalan, M., Harman, C., Brooks, P.D., Gupta, H., and Huxman, T. (2009) Climate and vegetation water use efficiency at catchment scales. Hydrological Process, Vol. 23, pp. 2409-2414. https://doi.org/10.1002/hyp.7358
  23. Veatch, W., Brooks, P.D., Gustafson, J.R., and Molotch, N.P. (2009) Quantifying the effects of forest canopy cover on net snow accumulation at a continental, mid-latitude site. Ecohydrology, DOI:10.1002/eco.45.
  24. Walther, G.R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T.J.C., Fromentin, J.M., Hoegh-Guldberg, O., and Bairlein, F. (2002) Ecological responses to recent climate change. Nature, Vol. 416, pp. 389-395. https://doi.org/10.1038/416389a
  25. Webb, W., Szarek, S., Lauenroth, W., Kinerson, R., and Smith, M. (1986) Primary productivity and water use in native forest, grassland, and desert ecosystems. Ecology, Vol. 59, pp. 1239-1247.
  26. Zhang, L., Dawes, W.R., and Walker, G.R. (2001) Response of mean annual evapotranspiration to vegetation changes at catchment scale. Water Resources Research, Vol. 37, pp. 701-708. https://doi.org/10.1029/2000WR900325