DOI QR코드

DOI QR Code

다중 와류 유동을 이용한 자기유체역학 (MHD) 마이크로 믹서

Magnetohydrodynamic (MHD) Micromixer Using Multi-Vortical Flow

  • 양원석 (중앙대학교 기계공학부) ;
  • 김동성 (중앙대학교 기계공학부)
  • Yang, Won-Seok (School of Mechanical Engineering, Chung-Ang University) ;
  • Kim, Dong-Sung (School of Mechanical Engineering, Chung-Ang University)
  • 발행 : 2010.01.01

초록

본 논문에서는, 자기유체역학(MHD)을 기반으로 마이크로 채널 내부에 다중 와류 유동을 발생시키는 새로운 형태의 카오스 마이크로 믹서를 제안한다. 제안된 마이크로 믹서의 마이크로 채널 내부에는 양측면과 바닥면에 전극들이 배치되어 있다. 배치된 전극들에 인가되는 전압 조건에 따라 다양한 형태로 로렌츠 힘이 유도되며, 이렇게 유도된 로렌츠 힘은 마이크로 채널 내부 유체의 추진 및 혼합을 야기할 수 있다. 제안된 MHD 마이크로 믹서의 혼합 양상을 평가하기 위해 3 차원 전산유체역학 시뮬레이션을 수행하였다. 이를 통해 다양한 유동 조건에 대해 MHD 마이크로 믹서의 혼합 성능을 평가하였다.

In this paper, we propose a novel chaotic micromixer of which mixing mechanism is based upon magnetohydrodynamic (MHD) multi-vortical flow generation in a simple straight microchannel. In the microchannel of the micromixer has electrodes patterned on two side walls and bottom wall. Lorentz forces are variously induced by changing applied voltages at the patterned electrodes in order to pump and mix conductive fluids in the microchannel. Three-dimensional computational fluid dynamics simulations were conduced to characterize mixing behaviors inside the MHD micromixer. The mixing efficiencies were also evaluated for the various flow conditions.

키워드

참고문헌

  1. West, J., Becker, M., Tombrink, S. and Manz, A., 2008, “Micro Total Analysis Systems: Latest Achievements,” Anal. Chem., Vol. 80, pp. 4403-4419 https://doi.org/10.1021/ac800680j
  2. Jang, J. and Lee, S.S., 2000, “Theoretical and Experimental Study of MHD (Magnetohydrodynamic) Micropump,” Sensor Actuat. A, Vol. 80, pp. 84-89 https://doi.org/10.1016/S0924-4247(99)00302-7
  3. Lemoff, A.V. and Lee, A.P., 2000, “An AC Magnetohydrodynamic Micropump,” Sensor Actuat. B, Vol. 63, pp. 178-185 https://doi.org/10.1016/S0925-4005(00)00355-5
  4. Homsy, A., Koster, S., Eijkel, J.C.T., van den Berg, A., Lucklum, F., Verpoorte, E. and de Rooij, N.F., 2005, “A High Current Density DC Magnetohydrodynamic (MHD) Micropump,” Lab Chip, Vol. 5, pp. 466-471 https://doi.org/10.1039/b417892k
  5. West, J., Karamata, B., Lillis, B., Gleeson, J.P., Alderman, J., Collins, J.K., Lane, W., Mathewson, A. and Berney, H., 2002, “Application of Magneto Hydrodynamic Actuation to Continuous Flow Chemistry,” Lab Chip, Vol. 2, pp. 224-230 https://doi.org/10.1039/b206756k
  6. Liu, R.H., Stremler, M.A., Sharp, K.V., Olsen, M.G., Santiago, J.G., Adrian, R.J., Aref, H. and Beebe, D.J., 2000, “Passive Mixing in a Three-Dimensional Serpentine Microchannel,” J. Microelectromech. Syst., Vol. 9, pp. 190-197 https://doi.org/10.1109/84.846699
  7. Kim, D.S., Lee, S.H., Kwon, T.H. and Ahn, C.H., 2005, “A Serpentine Laminating Micromixer Combining Splitting/Recombination and Advection,” Lab Chip, Vol. 5, pp. 739-747 https://doi.org/10.1039/b418314b
  8. Park, J.M., Kim, D.S., Kang, T.G. and Kwon, T.H., 2008, “Improved Serpentine Laminating Micromixer with Enhanced Local Advection,” Microfluid. Nanofluid., Vol. 4, pp. 513-523 https://doi.org/10.1007/s10404-007-0208-x
  9. Bau, H.H., Zhong, J. and Yi, M., 2001, “A Minute Magneto Hydro Dynamic (MHD) Mixer,” Sensor Actuat. B, Vol. 79, pp. 207-215 https://doi.org/10.1016/S0925-4005(01)00851-6
  10. Qian, S. and Bau, H.H., 2005, “Magnetohydrodynamic Stirrer for Stationary and Moving Fluids,” Sensor Actuat. B, Vol. 106, pp. 859-870 https://doi.org/10.1016/j.snb.2004.07.011
  11. Xiang, Y. and Bau, H.H., 2003, “Complex Magnetohydrodynamic Low-Reynolds-Number Flows,” Phys. Rev. E, Vol. 68, pp. 016312 https://doi.org/10.1103/PhysRevE.68.016312
  12. Kim, D.S. and Kwon, T.H., 2006, “Magnetohydrodynamic (MHD) Complex Flow Generation in Microchannel,” Nanotech2006, Boston, USA, Vol. 2, pp. 524-527
  13. Wang, L. and Yang, J. T., 2006, “An Overlapping Crisscross Micromixer using Chaotic Mixing Principles,” J. Micromech. Microeng., Vol. 16, pp. 2684-2691 https://doi.org/10.1088/0960-1317/16/12/022
  14. Lim S. and Choi B., 2009, “A Study on the MHD (magnetohydrodynamic) Micropump with Side- Walled Electrodes,” J. Mech. Sci. Technol., Vol. 23, pp. 739-749 https://doi.org/10.1007/s12206-008-1107-0