DOI QR코드

DOI QR Code

Two-Dimensional Patterning of Bacteria by Inkjet Printer

잉크젯 프린터를 이용한 박테리아의 이차원 패터닝

  • Yoon, Seong-Hee (School of Mechanical and Automotive Engineering, Kookmin University) ;
  • Lee, Seul-Gi (School of Mechanical and Automotive Engineering, Kookmin University) ;
  • Cho, Myoung-Ock (Research Institute for Well-Being Environmental Technology, Kookmin University) ;
  • Kim, Jung-Kyung (School of Mechanical and Automotive Engineering, Kookmin University)
  • 윤성희 (국민대학교 기계자동차공학부) ;
  • 이슬기 (국민대학교 기계자동차공학부) ;
  • 조명옥 (국민대학교 웰빙환경기술연구소) ;
  • 김중경 (국민대학교 기계자동차공학부)
  • Published : 2010.01.01

Abstract

Patterning bacteria and cells on substrates has potential applications in molecular biology, antimicrobial drug screening, environmental monitoring and tissue engineering. We developed a technique to deposit two-dimensional array of bacterial cells onto an agar plate by modifying commercially available thermal inkjet printers. The concentration of the bacterial solution in the cartridge was carefully determined to ensure a single cell suspension in a droplet ejected from a nozzle. We measured quantitatively the effects of the bacterial concentration and the agar concentration on patterning performance. Bacterial patterning by inkjet printer is a low-cost and versatile technique which may replace the existing sophisticated methods.

박테리아나 세포를 표면에 패터닝하는 기술은 세포생물학, 항균제 스크리닝, 항균 모니터링, 조직 공학 등 다양한 분야에 적용될 수 있는 잠재력을 지니고 있다. 본 연구에서는 부분적으로 개조된 열방식의 잉크젯 프린터를 이용하여 박테리아를 평판 한천배지에 2차원 배열로 패터닝할 수 있는 기법을 개발하였다. 박테리아 용액의 농도는 잉크젯 노즐에서 분출되는 용액 한 방울에 한개의 콜로니가 형성되도록 최적화 하였고, 박테리아 농도와 한천배지 농도가 패터닝 성능에 미치는 영향을 정량적으로 측정하였다. 상용 잉크젯 프린터를 이용한 박테리아 패터닝은 기존 방법에 비해 비용과 재료의 소모가 적다는 장점이 있다.

Keywords

References

  1. Breitling, F., Nesterov, A., Stadler, V., Felgenhauer, T. and Bischoff, F. R., 2009, "High-density Peptide Arrays," Mol. BioSyst., Vol. 5, No. 3, pp. 224-234 https://doi.org/10.1039/b819850k
  2. Ryu, K. and Lee, E. K., 2008, "Rapid Screening Method of Peroxidase by Colorimetric Assay and Screening of 2, 4-DCP Degradable Strains," Kor. J. Biotechnol. Bioeng., Vol. 23, No. 6, pp. 484-488
  3. Kim, J.-H., Lee, D.-Y., Hwang, J. and Jung, H.-I., 2009, "Direct Pattern Formation of Bacterial cells Using Micro-droplets Generated by Electrohydrodynamic Forces," Microfluid. Nanofluid., Vol. 7, No. 6, pp. 829-839 https://doi.org/10.1007/s10404-009-0441-6
  4. Xu, T., Jin, J., Gregory, C., Hickman, J. J. and Boland, T., 2005, "Inkjet Printing of Viable Mammalian Cells," Biomaterials, Vol. 26, No. 1, pp. 93-99 https://doi.org/10.1016/j.biomaterials.2004.04.011
  5. Yoon, S., Lee, S., Cho, M. Y. and Kim, J. K., 2008, "Bacterial Patterning by Inkjet Printer," Proceedings of the Korean Society of Medical & Biological Engineering, Vol. 38, pp. 229-231
  6. Xu, T., Petridou, S., Lee, E. H., Roth, E. A., Vyavahare, N. R., Hickman, J. J. and Boland, T., 2004, "Construction of High-density Bacterial Colony Arrays and Patterns by the Ink-jet Method," Biotechnol. Bioeng., Vol. 85, No. 1, pp. 29-33 https://doi.org/10.1002/bit.10768