Estimation of nonlinear GARCH-M model

비선형 평균 일반화 이분산 자기회귀모형의 추정

  • Shim, Joo-Yong (Department of Applied Statistics, Catholic University of Daegu) ;
  • Lee, Jang-Taek (Department of Statistics, Dankook University)
  • 심주용 (대구가톨릭대학교 응용통계학과) ;
  • 이장택 (단국대학교 정보통계학과)
  • Received : 2010.05.13
  • Accepted : 2010.08.28
  • Published : 2010.09.30

Abstract

Least squares support vector machine (LS-SVM) is a kernel trick gaining a lot of popularities in the regression and classification problems. We use LS-SVM to propose a iterative algorithm for a nonlinear generalized autoregressive conditional heteroscedasticity model in the mean (GARCH-M) model to estimate the mean and the conditional volatility of stock market returns. The proposed method combines a weighted LS-SVM for the mean and unweighted LS-SVM for the conditional volatility. In this paper, we show that nonlinear GARCH-M models have a higher performance than the linear GARCH model and the linear GARCH-M model via real data estimations.

최소제곱 서포트벡터기계는 비선형회귀분석과 분류에 널리 쓰이는 커널기법이다. 본 논문에서는 금융시계열자료의 평균 및 변동성을 추정하기 위하여 평균의 추정 방법으로는 가중최소제곱 서포트벡터기계, 변동성의 추정 방법으로는 최소제곱 서포트벡터기계를 사용하는 비선형 평균 일반화 이분산 자기회귀모형을 제안한다. 제안된 모형은 선형 일반화 이분산 자기회귀모형 및 선형 평균 일반화 이분산 자기회귀모형보다 더 나은 추정 능력을 가진다는 것을 실제자료의 추정을 통하여 보였다.

Keywords

References

  1. Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307-327. https://doi.org/10.1016/0304-4076(86)90063-1
  2. Domowitz, I. and Hakkio, C. S. (1985). Conditional variance and the riskpremium in the foreign exchange market. Journal of International Economics, 18, 47-66.
  3. Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987-1007. https://doi.org/10.2307/1912773
  4. Hwang, C. (2007). Kernel machine for Poisson regression. Journal of Korean Data & Information Science Society, 18, 767-772.
  5. Hwang, C. and Shin, S. (2010). Estimating GARCH models using kernel machine learning. Journal of Korean Data & Information Science Society, 21, 419-425.
  6. Kimeldorf, G. S. and Wahba, G. (1971). Some results on Tchebycheffian spline functions. Journal of Mathematical Analysis and its Applications, 33, 82-95. https://doi.org/10.1016/0022-247X(71)90184-3
  7. Kuhn, H. W. and Tucker, A. W. (1951). Nonlinear programming. Proceedings of 2nd Berkeley Symposium, University of California Press, Berkeley, 481-492.
  8. Mercer, J. (1909). Function of positive and negative type and their connection with theory of integral equations. Philosophical Transactions of Royal Society, A, 415-446.
  9. Najand, M. and Yung, K. (1991). A GARCH examination of the relationship between volume and price variability in futures markets. The Journal of Futures Markets, 11, 613-621. https://doi.org/10.1002/fut.3990110509
  10. Perez Cruz, F., Afonso Rodriguez, J. A. and Giner, J. (2003). Estimating GARCH models using support vector machines. Quantitative Finance, 3, 163-172. https://doi.org/10.1088/1469-7688/3/3/302
  11. Shim, J. and Hwang, C. (2003). Prediction intervals for LS-SVM regression using the bootstrap. Journal of Korean Data & Information Science Society, 14, 337-343.
  12. Shim, J. and Lee, J. T. (2009). Kernel method for autoregressive data. Journal of Korean Data & Information Science Society, 20, 467-472.
  13. Suykens, J. A. K. and Vanderwalle, J. (1999). Least square support vector machine classifier. Neural Processing Letters, 9, 293-300. https://doi.org/10.1023/A:1018628609742
  14. Suykens, J. A. K., De Brabanter, J., Lukas, L. and Vandewalle, J. (2002). Weighted least squares support vector machines: Robustness and sparse approximation. Neurocomputing, 66, 85-105
  15. Vapnik, V. N. (1998). Statistical Learning Theory, John Wiley, New York.