DOI QR코드

DOI QR Code

Study on the Novel Fabrication Method of Highly Birefringent Photonic Crystal Fiber

새로운 구조의 큰 복 굴절을 가진 광자결정 광섬유의 제작에 관한 연구

  • Ma, Kyung-Sik (Photonics Sensor System Center, Division of Robotics & System Research, Korea Institute of Science and Technology (KIST)) ;
  • Kim, Gil-Hwan (Photonics Sensor System Center, Division of Robotics & System Research, Korea Institute of Science and Technology (KIST)) ;
  • Hwang, Kyu-Jin (Photonics Sensor System Center, Division of Robotics & System Research, Korea Institute of Science and Technology (KIST)) ;
  • Eom, Sung-Hoon (Photonics Sensor System Center, Division of Robotics & System Research, Korea Institute of Science and Technology (KIST)) ;
  • Lee, Kwan-Il (Photonics Sensor System Center, Division of Robotics & System Research, Korea Institute of Science and Technology (KIST)) ;
  • Jung, Je-Myung (Digital System Design & Optical Communications Lab, Hanyang University) ;
  • Lee, Sang-Bae (Photonics Sensor System Center, Division of Robotics & System Research, Korea Institute of Science and Technology (KIST))
  • 마경식 (한국과학기술연구원 포토닉스 센서 시스템 센터) ;
  • 김길환 (한국과학기술연구원 포토닉스 센서 시스템 센터) ;
  • 황규진 (한국과학기술연구원 포토닉스 센서 시스템 센터) ;
  • 엄성훈 (한국과학기술연구원 포토닉스 센서 시스템 센터) ;
  • 이관일 (한국과학기술연구원 포토닉스 센서 시스템 센터) ;
  • 정제명 (한양대학교 디지털 시스템 디자인 및 광통신 연구실) ;
  • 이상배 (한국과학기술연구원 포토닉스 센서 시스템 센터)
  • Received : 2010.07.28
  • Accepted : 2010.11.01
  • Published : 2010.12.25

Abstract

We fabricate highly birefringent photonic crystal fiber with new structure using a stack and draw method. Fabricated fiber has two big air holes, one at each side of the outside air cladding region, leading to core ellipticity during the drawing process. Birefringence of the fabricated Hi-Bi PCF is measured to be $2.29{\times}10^{-4}$ (at 1550 nm).

Stack-and-draw 방법을 사용하여 새로운 구조의 높은 복굴절을 가진 광자 결정 광섬유(highly birefringent photonic crystal fiber, Hi-Bi PCF)를 제작하였다. 제작된 광섬유는 공기구멍으로 구성된 클래딩 외부에 큰 공기구멍을 추가함으로써 광섬유 인출 과정중에 코어와 공기층 클래딩 영역에 비대칭적인 압력이 인가되어 코어가 타원형으로 변형되어 복굴절이 유도된다. 제작된 Hi-Bi PCF의 복굴절은 1550 nm에서 $2.29{\times}10^{-4}$로 측정되었다.

Keywords

References

  1. T. G. Giallorenzi, J. A. Bucaro, A. Dandridge, and G. H. Sigel, “Optical fiber sensor technology,” IEEE Transsactions on Microwave Theory and Techniques MTT-30, 4 (1982).
  2. N. A. Mortensen, “Effective area of photonic cystal fibers,” Opt. Express 10, 341-348 (2002). https://doi.org/10.1364/OE.10.000341
  3. T. Birks, J. Knight, and P. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22, 961-963 (1997). https://doi.org/10.1364/OL.22.000961
  4. J. C. Knight, T. A. Birks, R. F. Cregon, P. Russell, and J. P. Sandro, “Large mode area photonic crystal fiber,” Electron. Lett. 34, 1347-1348 (1998). https://doi.org/10.1049/el:19980965
  5. A. Ferrando, E. Silvestre, J. Mirret, J. Monsoriu, M. Andres, and P. Russell, “Designing a photonic crystal fiber with flattened chromatic dispersion,” Electron. Lett. 35, 325-327 (1999). https://doi.org/10.1049/el:19990189
  6. A. Ortigosa-Blanch, J. C. Kinght, W. J. Wadsworth, J. Arriaga, B. J. Mangan, T. A. Birks, and P. Russell, “Highly birefringent photonic crystal fiber,” Opt. Lett. 25, 1325-1327 (2000). https://doi.org/10.1364/OL.25.001325
  7. D. H. Kim and J. U. Kang, “Sagnac loop interferometer based on polarization maintaining photonic crystal fiber with reduced temperature sensitivity,” Opt. Express 12, 4490-4495 (2004). https://doi.org/10.1364/OPEX.12.004490
  8. T. Y. Cho, G. H. Kim, K. Lee, S. B. Lee, and J.-M. Jeong, “Study on the fabrication process of polarization maintaining photonic crystal fibers and their optical properties,” J. Opt. Soc. Korea 12, 19-24 (2008). https://doi.org/10.3807/JOSK.2008.12.1.019
  9. K. Suzuki, H. Kubota, S. Kawanishi, M. Tanaka, and M. Fujita, “Optical properties of a low-loss polarization-maintaining photonic crystal fiber,” Opt. Express 9, 676-680 (2001). https://doi.org/10.1364/OE.9.000676
  10. P. R. Chaudhuri, V. Paulose, C. Zhao, and C. Lu, “Nearelliptic core polarization-maintaining photonic crystal fiber: modeling birefringence characteristics and realization,” IEEE Photon. Technol. Lett. 16, 1301-1303 (2004). https://doi.org/10.1109/LPT.2004.826219
  11. T. R. Wolinski, A. Czapla, S. Ertman, and M. Tefelska, “Tunable highly birefringent solid-core photonic liquid crystal fibers,” Opt. Quant. Electron. 39, 1021-1032 (2007). https://doi.org/10.1007/s11082-007-9127-z
  12. S.-G. Li and S.-Y. Liu, “Study of the sensitivity of gas sensing by use of index-guiding photonic crystal fibers,” Appl. Opt. 46, 5183-5188 (2007). https://doi.org/10.1364/AO.46.005183
  13. G. Chesini, C. M. B. Cordeiro, C. J. S. de Matos, M. Fokine, I. C. S. Carvalho, and J. C. Knight, “All-fiber devices based on photonic crystal fibers with integrated electrodes,” Opt. Express 17, 1660-1665 (2009). https://doi.org/10.1364/OE.17.001660
  14. A. C. Sodre Jr., F. Luan, C. M. B. Cordeiro, A. K. George, and J. C. Knight, “Hybrid photonic crystal fiber,” Opt. Express 14, 926-931 (2006). https://doi.org/10.1364/OPEX.14.000926