DOI QR코드

DOI QR Code

Simulation of Luminance and Uniformity of LGP According to the Laser Scattering Pattern

렌즈형 광섬유를 이용하여 펄스형 반도체 레이저 Beam Shaping 및 증폭 기술 연구

  • Received : 2010.09.02
  • Accepted : 2010.11.29
  • Published : 2010.12.25

Abstract

We investigate an optical technique for beam shaping and optical amplification of a pulsed laser diode without variation of its original properties, such as repetition rate and pulse duration. The horizontal and longitudinal sizes of the pulsed laser diode are 300 and $2{\mu}m$, respectively, and its output power is $1.1mW/cm^2$. The multimodal and elliptical pulse shape of the laser diode is converted to the single-modal and Gaussian pulse shape by using a lensed optical fiber. Since the single-modal lensed fiber coupling from the multimodal pulsed laser diode degrades the output power severely, the output power of the pulsed laser diode is dramatically enhanced by using an optical amplification method based on master oscillated power amplification (MOPA). The pulse qualities of the laser diode are not changed after amplifying the pulse power and the output power was finally measured to be $29mW/cm^2$.

타원형 모양의 모드 형태를 갖는 펄스형 레이저 다이오드 (laser diode)의 펄스 형태를 유지하면서 단일 모드 및 Gaussian 형태로 광 모드 변환을 유도하고 광출력을 증폭할 수 있는 기술에 대해서 연구하였다. 실험에서 사용한 펼스형 레이저 다이오드의 구경이 가로는 $300{\mu}m$이며, 세로는 $2{\mu}m$이고 출력은 $1.1mW/cm^2$이다. 렌즈형 광섬유를 사용하여 광결합을 유도하여 단일 모드 및 Gaussian 형태의 출력으로 변환시켰다. 그러나, 다중모드의 펄스형 레이저 다이오드의 출력을 단일모드 렌즈형 광섬유에 결합시키면 출력이 급격하게 감소한다. 따라서 master oscillator power amplifier (MOPA) 기반의 광증폭 기술을 이용하여 레이저 다이오드의 광출력을 증폭시켰다. 증폭 후에도 펄스 성질은 그대로 유지되었고, MOPA구조를 지나 증폭된 광 출력은 $29mW/cm^2$로 측정되었다.

Keywords

References

  1. T. Durhuus, B. Mikkelsen, C. Joergensen, S. L. Danielsen, and K. E. Stubkjaer, “All-optical wavelength conversion by semiconductor optical amplifiers,” J. Light of Technol. 14, 942-954 (1996). https://doi.org/10.1109/50.511594
  2. N. S. Bergano, F. W. Kerfoot, and C. R. Davidsion, “Margin measurements in optical amplifier system,” IEEE Photon. Technol. Lett. 5, 304-306 (1993). https://doi.org/10.1109/68.205619
  3. S. J. Park, G. Y. Kim, and T. S. Park, “WDM-PON system based on the laser light injected reflective semiconductor optical amplifier,” Opt. Fiber. Technol. 12, 162-169 (2006). https://doi.org/10.1016/j.yofte.2005.07.006
  4. B. Pesala, Z. Chen, A. V. Uskove, and C. Chang-Hasnain, “Experimental demonstration of slow and superluminal light in semiconductor optical amplifiers,” Opt. Express 14, 12968-12975 (2006). https://doi.org/10.1364/OE.14.012968
  5. C. Headley, M. mermelstein, and J.-C. Bouteiller, “Raman fiber lasers,” Springer Series in Opical Sciences 90/1/2004, 353-382 (2004).
  6. K. Y. Song, M. Herraez, and L. Thevenaz, “Observation of pulse delaying and advancement in optical fibers using stimulated Brillouin scattering,” Opt. Express 13, 82-88 (2005). https://doi.org/10.1364/OPEX.13.000082
  7. O. D. Mucke, D. Sidorov, P. Dombi, A. Pugzlys, A. Baltuska, S. Alisauskas, V. Smilgevicius, J. Pocius, L. Giniunas, R. Danielius, and N. Forget, “Scalable Yb-MOPA-driven carrierenvelope phase- stable few-cycle parametric amplifier at $1.5{\mu}m$,” Opt. Lett. 34, 118-120 (2009). https://doi.org/10.1364/OL.34.000118
  8. K. T. Vu, A. Malinowski, D. J. Richardson, F. Ghiringhelli, L. M. B. Hichey, and M. N. Zervas, “Adaptive pulse shape control in a diode-seeded nanosecond fiber MOPA system,” Opt. Lett. 14, 10996-11001 (2006).
  9. W. H. Cheng, C. S. Wang, and C. J. Hwang, “Highly efficient power coupling between GaAlAs lasers and tapered-hemispherical-end multimode fibers,” Appl. Opt. 21, 3409-3410 (1982). https://doi.org/10.1364/AO.21.003409
  10. D. J. Ripin and L. Goldberg, “High efficiency side-coupling of light into optical fibers using imbedded v-grooves,” Electron. Lett. 31, 2204-2205 (1995). https://doi.org/10.1049/el:19951429
  11. M. J. Daneman, O. Solgaard, N. C. Tien, K. Y. Lau, and R. S. Muller, “Laser-to-fiber coupling module using a micromachined alignment mirror,” IEEE Photon. Technol. Lett. 8, 396-398 (1996). https://doi.org/10.1109/68.481129